Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2021

The effect of structure and texture on pure magnesium properties

  • Bartosz Sułkowski EMAIL logo


Deformation modes and twin hardening of pure magnesium under compression in respect of the initial structure and texture were studied in the present work. In general, samples had two types of texture with different alignment of c-axis in respect to a compression direction. In the first case, most of the grains have the c-axis parallel to the compression direction and in the second case, the c-axis was perpendicular with the compression direction. It was found that coarse grained material deformed by slip despite the type of the texture, while the fine grained samples, with c-axis perpendicular to the compression direction, deformed by twinning. The samples which deform by twinning exhibited the highest yield point. It was concluded that combination of the fine grained structure and hard type texture components may introduce twinning as the main deformation mode and may increase the mechanical properties of magnesium and its alloys. The model for twin induced hardening is proposed where twins act as the grain refinement factor.

Dr. inż. Bartosz Sułkowski Department of Non-Ferrous Metals Engineering Faculty of Non-Ferrous Metals AGH University of Science and Technology 30 Mickiewicza Av. 30-059 Krakow Poland


[1] K.U. Kainer, Magnesium Alloys and Technologies, Wiley-VCH,10.1002/3527602046Search in Google Scholar

[2] S.K. Mishra, S.M. Tiwari, J.T. Carter, A. Tewari: Mater. Sci. Eng. A 599 (2014) 1–8. DOI:10.1016/j.msea.2014.01.03410.1016/j.msea.2014.01.034Search in Google Scholar

[3] R. Gehrmann, M.M. Frommert, G. Gottstein: Mater. Sci. Eng. A 395 (2005) 338–349. DOI:10.1016/j.msea.2005.01.00210.1016/j.msea.2005.01.002Search in Google Scholar

[4] D. Liu, Z. Liu, E. Wang: Mater. Sci. Eng. A 612 (2014) 208–213. DOI:10.1016/j.msea.2014.06.03410.1016/j.msea.2014.06.034Search in Google Scholar

[5] D. Liu, Z. Liu, E. Wang: Trans. Nonferrous Met. Soc. China 28 (2018) 244–250. DOI:10.1016/S1003-6326(18)64657-610.1016/S1003-6326(18)64657-6Search in Google Scholar

[6] A.K. Singh, R.A. Schwarzer, Evolution of texture in pure magnesium during rolling, Z. Metallkd 96 (2005) 4.10.3139/146.018119Search in Google Scholar

[7] S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, J. Homeyer: Acta Mater. 54 (2006) 549–562. DOI:10.1016/j.actamat.2005.09.02410.1016/j.actamat.2005.09.024Search in Google Scholar

[8] G.S. Rao, Y.V.R.K Prasad: Bull. Mater. Sci. 5 (1983) 459 –464. DOI:10.1007/BF0274392210.1007/BF02743922Search in Google Scholar

[9] Y. Wang, H. Choo: Acta Mater. 81 (2014) 83 –97. DOI:10.1016/j.actamat.2014.08.02310.1016/j.actamat.2014.08.023Search in Google Scholar

[10] B. Sułkowski, R. Chulist: Mater. Sci. Eng. A 749 (2019) 89–95. DOI:10.1016/j.msea.2019.01.11810.1016/j.msea.2019.01.118Search in Google Scholar

[11] B. Sułkowski: MAFE 44 (2018) 91–100. DOI:10.7494/mafe.2018.44.2.9110.7494/mafe.2018.44.2.91Search in Google Scholar

[12] W. Tang, D. Li, S. Huang, S. Zhang, Y. Peng: Comput. Struct. 143 (2014) 1–8. DOI:10.1016/j.compstruc.2014.07.01510.1016/j.compstruc.2014.07.015Search in Google Scholar

[13] W. Yuan, S.K. Panigrahi, J.-Q. Su, R.S. Mishra: Scr. Mater. 65 (2011) 994–997. DOI:10.1016/j.scriptamat.2011.08.02810.1016/j.scriptamat.2011.08.028Search in Google Scholar

[14] N. Ono, R. Nowak, S. Miura: Mater. Lett. 58 (2003) 39–43. DOI:10.1016/S0167-577X(03)00410-510.1016/S0167-577X(03)00410-5Search in Google Scholar

[15] Y. Estrin, A. Vinogradov: Acta Mater. 61 (2013) 782–817. DOI:10.1016/j.actamat.2012.10.03810.1016/j.actamat.2012.10.038Search in Google Scholar

[16] B. Guan, Y. Xin, X. Huang, P. Wu, Q Liu: Acta Mater. 173 (2019) 142–152. DOI:10.1016/j.actamat.2019.05.01610.1016/j.actamat.2019.05.016Search in Google Scholar

[17] L. Meng, P. Yang, Q. Xie, W. Mao: Mater. Trans. 49 (2008) 710–714. DOI:10.2320/matertrans.MRA200724210.2320/matertrans.MRA2007242Search in Google Scholar

[18] Q. Ma, H.E. Kadiri, A.L. Oppedal, J.C. Baird, M.F. Horstemeyer, M. Cherkaouic: Scr. Mater. 64 (2011) 813 –816. DOI:10.1016/j.scriptamat.2011.01.00310.1016/j.scriptamat.2011.01.003Search in Google Scholar

[19] J. Capek, J. Straska, B. Clausen, K. Mathis: Acta Phys. Pol. A 128 (2015) 762. DOI:10.12693/AphysPolA.128.76210.12693/AphysPolA.128.762Search in Google Scholar

[20] P. Dobron, F. Chmelik, S. Yi, K. Parfenenko, D. Letzigb, J. Bohlen: Scr. Mater. 65 (2011) 424–427. DOI:10.1016/j.scriptamat.2011.05.02710.1016/j.scriptamat.2011.05.027Search in Google Scholar

[21] M.S. Tsai, C.P. Chang: Mater. Sci. Technol. 29 (2013) 759 –763. DOI:10.1179/1743284713Y.000000023710.1179/1743284713Y.0000000237Search in Google Scholar

[22] D. Guan, B. Wynne, J. Gao, Y. Huang, W.M. Rainforth: Acta Mater. 170 (2019) 1–14. DOI:10.1016/j.actamat.2019.03.01810.1016/j.actamat.2019.03.018Search in Google Scholar

Received: 2020-04-03
Accepted: 2020-09-14
Published Online: 2021-02-19

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 6.12.2023 from
Scroll to top button