Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2021

The antimicrobial efficacy of biosynthesized nanostructured ceria

  • P. S. Prabha Jyothi EMAIL logo , B. Anitha and Nisha J. Tharayil


Biosynthesis of metal oxide nanoparticles is an emerging eco-friendly approach. Currently, researchers have been developing various nanomaterials with effective antimicrobial properties with less toxicity to humans. Here, nanostructured ceria or cerium oxide nanoparticles of average crystallite size 5 nm are synthesized by a chemical co-precipitation method using cerium nitrate hexa hydrate and sodium hydroxide as starting materials. The most fascinating bio-material known to man, deoxyribo nucleic acid (DNA) is used as a biological capping agent to get well dispersed nanoparticles. The structural and morphological characterization of prepared samples was conducted using X-ray diffraction, high resolution transmission electron microscopy and Fourier transform infrared spectroscopy. The synthesized cerium oxide nanoparticle showed potential antibacterial activity against both bacteria and fungi under investigation. The results also showed that the synthesized nanoceria can be used to inhibit the growth of several fungi which will be useful for a number of applications in the biomedical field.

Prabha Jyothi P. S. Assistant Professor Department of Physics Sree Narayana College for Women Kollam-691001 India Tel.: +91 9895629682

Funding statement: The authors acknowledge their sincere thanks to SAIF cochin and Biogenix, Thiruvananthapuram for characterization.


[1] S. Rajesh Kumar, Poonam: Biotechnology Reports 17 (2017) 1. PMid:28580302; DOI:10.1016/j.btre.2017.11.00810.1016/j.btre.2017.11.008Search in Google Scholar

[2] M. Sack, L. Alili, E. Karaman, S. Das, A. Gupta, S. Seal, P. Brenneisen: Mol. Cancer Ther. 13 (2014) 1740. PMid:24825856; DOI:10.1158/1535-7163.MCT-13-095010.1158/1535-7163.MCT-13-0950Search in Google Scholar

[3] S. Singh, A. Ly, S. Das, T.S. Sakthivel, S. Barkam, S. Seal: Artif. CellsNanomed. Biotechnol. 46 (2018) 956. PMid:30314412; DOI:10.1080/21691401.2018.152181810.1080/21691401.2018.1521818Search in Google Scholar

[4] S. Barkam, J. Ortiz, S. Saraf, N. Eliason, R. Mccormack, S. Das, A. Gupta, C. Neal, A. Petrovici, C. Hanson, M.D. Sevilla, A. Adhikary, S. Seal: The Journal of Physical Chemistry C 2017121 (36), 20039–20050. PMid:28936278; DOI:10.1021/acs.jpcc.7b0572510.1021/acs.jpcc.7b05725Search in Google Scholar

[5] C. Zgheib, S.A. Hilton, L.C. Dewberry, M.M. Hodges, S. Ghatak, J. Xu, S. Singh, S. Roy, C.K. Sen, S. Seal, K.W. Liechty: J. Am. Coll. Surg. 228 (2019) 107. PMid:30359833; DOI:10.1016/j.jamcollsurg.2018.09.01710.1016/j.jamcollsurg.2018.09.017Search in Google Scholar

[6] R.S. Vardanyan, V.J. Hruby: Synthesis of Essential Drugs 425 (2006). DOI:10.1016/B978-044452166-8/50032-710.1016/B978-044452166-8/50032-7Search in Google Scholar

[7] M. Kolar, K. Urbanek, T. Latal: Int. J. Antimicrob. Ag. 17 (2001) 357. DOI:10.1016/S0924-8579(01)00317-X10.1016/S0924-8579(01)00317-XSearch in Google Scholar

[8] J.K. Fard, S. Jafari, M.A. Eghbal: Adv. Pharm. Bull. 5 (2015) 447. PMid:26819915; DOI:10.15171/apb.2015.06110.15171/apb.2015.061Search in Google Scholar PubMed PubMed Central

[9] L. Zhang, S. Zhou, A. Pan, J. Li, B. Liu: Int. J. of Infectious Diseases 33 (2015) 1. PMid:25541294; DOI:10.1016/j.ijid.2014.12.03310.1016/j.ijid.2014.12.033Search in Google Scholar PubMed

[10] A.P.F. Isabela, C.L.S. Carlos, C.S. Fábio: BioMed. Research Int. 1923606 (2018).Search in Google Scholar

[11] N.M. Zholobak, V.K. Ivanov, A.B. Shcherbakov: Nanobiomaterials in antimicrobial therapy: applications of nanobiomaterials. New York, Elsevier Inc (2016).Search in Google Scholar

[12] A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Aufan: Environ. Sci. Technol. 40 (19) (2006) 6151. PMid:17051814; DOI:10.1021/es060999b10.1021/es060999bSearch in Google Scholar PubMed

[13] C. Guozhong: Nano structures and Nano materials, Imperial College Press, London (2004).Search in Google Scholar

[14] Y. Yong, S. Yonghai, W. Li: Nanotechnology 19 (2008) 405601. PMid:21832687; DOI:10.1088/0957-4484/19/40/40560110.1088/0957-4484/19/40/405601Search in Google Scholar PubMed

[15] W.U. David: Encyclopedia of life sciences, Macmillan Publishers Ltd, Nature publishing Group (2002).Search in Google Scholar

[16] B. Nithyaja, H. Misha, V.P.N. Nampoothiri: Nano sci. and Nanotech. 2 (2012) 99. DOI:10.5923/j.nn.20120204.0210.5923/j.nn.20120204.02Search in Google Scholar

[17] National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. Approved standard. NCCLS document M2-A5. Wayne, Pa: National Committee for Clinical Laboratory Standards, 1993.Search in Google Scholar

[18] E.G. Heckert, S. Seal, W.T. Self: Environ. Sci.Technol. 42 (2008) 5014. PMid:18678042; DOI:10.1021/es800150810.1021/es8001508Search in Google Scholar PubMed PubMed Central

[19] K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu, V. Thomas: In. J. Pure Appl. Phys.53(2015)596.Search in Google Scholar

[20] P. Reshma, K.J. Ashwini: Nanomater. Mol. Nanotechnol. 6 (2017) 2. DOI:10.4172/2324-8777.100021910.4172/2324-8777.1000219Search in Google Scholar

[21] B.D. Cullity (3rd Edn): Elements of X-ray Diffraction, Prentice Hall, New Jersey (2001).Search in Google Scholar

[22] H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M.J. Lin: J. of Phys. Chem. 116 (2012) 242. PMid:23176640; DOI:10.1021/jp208432z10.1021/jp208432zSearch in Google Scholar PubMed

[23] Y. Han, L. Han, Y. Yao, Y. Li, X. Liu: Analytical Methods 10 (2018) 2436. DOI:10.1039/C8AY00386F10.1039/C8AY00386FSearch in Google Scholar

[24] R.C. Deus, C.R. Foschini, B. Spitova, F. Moura, E. Longo, A.Z. Simoes: Ceram. Intern. 40 (2014). DOI:10.1016/j.ceramint.2013.06.04310.1016/j.ceramint.2013.06.043Search in Google Scholar

[25] J.T. Seil, T.J. Webster: Int Journal of Nanomedicine 7 (2012) 2767. PMid:22745541; DOI:10.2147/IJN.S2480510.2147/IJN.S24805Search in Google Scholar PubMed PubMed Central

[26] dos Santos, C.C.L., Passos Farias, I.A., Reis Albuquerque, A.d.J.d: BMC Proc 8, P48 (2014). DOI:10.1186/1753-6561-8-S4-P4810.1186/1753-6561-8-S4-P48Search in Google Scholar

[27] Y.N. Slavin, J. Asnis, U.O. Hafeli, H. Bach: J. of Nanobiotechnology 15 (2017) 65. PMid:28974225; DOI:10.1186/τ12951-017-0308-z10.1186/τ12951-017-0308-zSearch in Google Scholar

[28] S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan: Int. J. Innov. Res. Sci. Eng. 2 (2014) 318.Search in Google Scholar

[29] S.K. Kannan, M. Sundrarajan: Int. J. Nanosci. 13 (2014) 1450018. DOI:10.1142/S0219581X1450018510.1142/S0219581X14500185Search in Google Scholar

[30] E. Alpaslan, B. Geilich, H. Yazici: Sci. Rep. 7, 45859 (2017). PMid:28387344; DOI:10.1038/srep4585910.1038/srep45859Search in Google Scholar PubMed PubMed Central

[31] M.A. Dar, R. Gul, A.A. Alfadda, M.R. Karim, D.W. Kim, C.L. Cheung: Sci. Adv. Mater. 9 (2017) 1248. DOI:10.1166/sam.2017.309810.1166/sam.2017.3098Search in Google Scholar

[32] I.A. Kartsonakis, P. Liatsi, I. Daniilidis, G. Kordas: J. Am. Ceram. Soc. 91 (2008) 372. DOI:10.1111/j.1551-2916.2007.02088.x10.1111/j.1551-2916.2007.02088.xSearch in Google Scholar

[33] K. Krishnamoorthy, M. Veerapandian, L.H. Zhang, K. Yun, S.J. Kim: J. Ind. Eng. Chem. 20 (5) (2014) 3513. DOI:10.1016/j.jiec.2013.12.04310.1016/j.jiec.2013.12.043Search in Google Scholar

[34] N. Thakur, P. Manna, J. Das: J. Nanobiotechnol. 17 (2019) 84. PMid:31291944; DOI:10.1186/τ12951-019-0516-910.1186/τ12951-019-0516-9Search in Google Scholar

Received: 2020-04-20
Accepted: 2021-09-13
Published Online: 2021-12-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 8.12.2023 from
Scroll to top button