Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 12, 2021

Refining performance and recession of Al–TiO2–C–La2O3 refiners

  • Xiao-wei Han , Zong-biao Zhang EMAIL logo , Rui-ying Zhang and Peng Wang

Abstract

Al–TiO2–C–La2O3 refiners were synthesized by the in-situ exothermic dispersion method using TiO2, C, Al and La2O3 powders as raw materials. Scanning electron microscopy equipped with energy dispersive X-ray spectrometry and X-ray diffraction were used to investigate the microstructures of the Al–TiO2–C–La2O3 refiners. Commercial pure aluminum was refined by the Al–TiO2–C–La2O3 refiners, aimed at investigating refining performance and the resistance to recession. The results show that the Al–TiO2– C–La2O3 refiner with 0.2% La2O3 is composed of α-Al, blocky Al3Ti, dispersive Al2O3 and TiC, which has a better refining effect on commercial pure aluminum than the Al– TiO2–C refiner. The average grain size refined by the above refiner is about 80 μm and it performs better and has a longer refining effect. The grain structure refined by Al–TiO2– C–La2O3 becomes finer within 5 min and remains the same after 120 min, while refined by the Al–TiO2–C refiner the equivalent times are 10 min and 30 min respectively.


Zong-Biao Zhang Department of education Bozhou University Tang Wang Da Dao Street Bozhou 236800 P. R. China Tel.: +86 0558-5348224

References

[1] W.X. Jie, L.X. Xiong, C.F. Guan, C.J. Zhong: Mater. Sci. 58 (2013) 468. DOI:10.1007/s11434-012-5585-110.1007/s11434-012-5585-1Search in Google Scholar

[2] Y.C. Huang, Z.B. Xiao, Y. Liu: J. Cent. South. Univ. 20 (2013) 2635. DOI:10.1007/s11771-013-1778-210.1007/s11771-013-1778-2Search in Google Scholar

[3] R. Dirk, K. Christoph, E. Sven, G. Gunter: J. Iron Steel Res. Int. 19 (2012) 341. DOI:10.13228/j.boyuan.issn1006-706x.2012.s1.07010.13228/j.boyuan.issn1006-706x.2012.s1.070Search in Google Scholar

[4] B.S. Murty, S.A. Kori, M. Chakraborty: Int. Mater. Rev. 47 (2002) 3–29. DOI:org/10.1179/095066001225001049. DOI:10.1179/095066001225001049org/10.1179/095066001225001049Search in Google Scholar

[5] D. Qiu, J.A. Taylor, M.X. Zhang: Metall. Mate. Trans. A. 41 (2010) 3412. DOI:10.1007/s11661-010-0404-210.1007/s11661-010-0404-2Search in Google Scholar

[6] E.Z. Wang, T. Gao, J.F. Nie, X.F. Liu: J. Alloys Compd. 594 (2014) 7. DOI:10.1016/j.jallcom.2014.01.14510.1016/j.jallcom.2014.01.145Search in Google Scholar

[7] B.T. Gezer, F. Toptan, S. Dagliar, L. Kerti: Mate. Design. 31 (2009) s 30. DOI:10.1016/j.matdes.2009.09.00210.1016/j.matdes.2009.09.002Search in Google Scholar

[8] Z.J. Wang: Nonferr. Met. 63 (2011) 10. DOI:10.3969/j. issn.10010211.2011.02.00310.3969/j.issn.10010211.2011.02.003Search in Google Scholar

[9] R.Y. Zhang, Z.M. Shi, H.X. Li: T. Mater. Heat Treat. 30 (2009) 30. DOI:10.13289/j.issn.10096264.2009.05.00310.13289/j.issn.10096264.2009.05.003Search in Google Scholar

[10] H.G. Zhu, Y.L. Jiang, Y.Q. Yao, J.Z. Song, J.L. Li, Z.H. Xie: Mater. Chem. Phys. 137 (2012) 532. DOI:10.1016/j.matchemphys.2012.09.05210.1016/j.matchemphys.2012.09.052Search in Google Scholar

[11] P.C. Bai, X.J. Dai, C.W. Zhao, Y.M. Xing: Acta Mater. Compos. Sin. 25 (2008) 88. DOI:10.13801/j.cnki.fhclxb.2008.01.01210.13801/j.cnki.fhclxb.2008.01.012Search in Google Scholar

[12] Y. Wang, H.T. Li, Z.Y. Fan: Trans. Indian Inst. Met. 65 (2012) 653. DOI:10.1007/s12666-012-0194-x10.1007/s12666-012-0194-xSearch in Google Scholar

[13] S.J. Chen, R.Y. Zhang, Z.M. Shi, Y.H. Li, X.W. Han: T. Mater. Heat Treat. 35 (2014) 6. DOI:10.13289/j.issn.1009–6264.2014.11.00210.13289/j.issn.1009–6264.2014.11.002Search in Google Scholar

[14] X.W. Han, R.Y. Zhang, P. Wang, Y.H. Li: Rare Metals. 40 (2016) 1226. DOI:10.13373/j.cnki.cjrm.xy1506030510.13373/j.cnki.cjrm.xy15060305Search in Google Scholar

[15] X.W. Han, R.Y. Zhang, Y.H. Li, P. Wang: T. Mater. Heat Treat. 36 (2015) 28. DOI:10.13289/j.issn.1009–6264.2015.08.00610.13289/j.issn.1009–6264.2015.08.006Search in Google Scholar

[16] V. Hassanbeygi, A. Shafyei: O.J. Met. 4 (2014) 49. DOI:10.4236/ojmetal.2014.4300610.4236/ojmetal.2014.43006Search in Google Scholar

[17] P. Kunnam, C. Limmaneevichitr: J. Mater. Technol. 24 (2008) 54. DOI:10.3321/j.issn:1005 –0302.2008.01.01410.3321/j.issn:1005–0302.2008.01.014Search in Google Scholar

[18] H.L. Zhao, Y. Song, M. Li.S.K. Guan: J. Alloys Compd. 508 (2010) 206. DOI:10.1016/j.jallcom.2010.08.04710.1016/j.jallcom.2010.08.047Search in Google Scholar

[19] Y.J. Chen, Q.Y. Xu, T.Y. Huang: The Chin. J. Nonferr. Met. 17 (2017) 1232. DOI:10.19476/j.ysxb.1004.0609.2007.08.00210.19476/j.ysxb.1004.0609.2007.08.002Search in Google Scholar

Received: 2020-04-27
Accepted: 2021-02-18
Published Online: 2021-05-12
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-7865/html
Scroll to top button