Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2021

Novel homo-epitaxial approaches in solvothermal synthesis for preparing surface tethered uni-directionally oriented zinc oxide micro and nano structured arrays

  • Anas Shereef EMAIL logo , Shajesh Palantavida , Marottikunnathu Raman Chandran , Kiran Mohan and Solaiappan Ananthakumar

Abstract

Surface aligned, uni-directionally grown, hexagonal nanorod bundles and microrod pillared arrays of zinc oxide (ZnO), were synthesized through a simple, homo-epitaxial growth approach. A uniform layer of ZnO seed was initially prepared on cleaned glass substrates by dip coating and calcination. Uni-directionally oriented ZnO micro– nano structures were subsequently developed on the seeded glass substrates through solvothermal methods, by employing equi-molar solutions of zinc nitrate and hexamethylenetetramine. The reaction parameters that control the surface morphologies and crystal orientations were explored. A solution exchange process was also carried out to prepare perpendicularly aligned ZnO nanorod arrays. The structural and functional features of the resultant samples were studied and discussed with the help of X-ray diffractometry, scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence spectrophotometry. A plausible structure dependent growth mechanism of the morphologically varied ZnO was also proposed.


Dr. Anas Shereef Assistant Professor & Head Department of Chemistry TKM College of Arts and Science Research Centre – University of Kerala Karicode Kollam – 691005 Kerala India Tel.: +91-9447926654 Fax: +91-471-2711817

Funding statement: The authors are thankful to the Council of Scientific and Industrial Research (CSIR), Department of Science and Technology (FIST-SR/FST/College-213/2014(C), University Grants Commission (MRP (S) – 0713/13-14/KLKE020/UGC – SWRO) for the financial and facility supports.

References

[1] I. Concina, Z.H. Ibupoto, A. Vomiero: Adv. Energy Mater. 7 (2017) 1700706. DOI:10.1002/aenm.20170070610.1002/aenm.201700706Search in Google Scholar

[2] Z.L. Wang, J. Song: Science 312 (2006) 242. PMid:16614215; DOI:10.1126/science.112400510.1126/science.1124005Search in Google Scholar PubMed

[3] M. Shaban, F. Mohamed, S. Abdallah: Sci. Rep. 8 (2018) 3925. PMid:29500470; DOI:10.1038/τ41598-018-22324-710.1038/τ41598-018-22324-7Search in Google Scholar

[4] I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos: Science 310 (2005) 462. PMid:16239470; DOI:10.1126/science.111790810.1126/science.1117908Search in Google Scholar PubMed

[5] R. Akbari, M.R. Mohammadizadeh, M.K. Aminian, M. Abbasnejad: Appl. Phys. A 125 (2019) 190. DOI:10.1007/τ00339-019-2470-710.1007/τ00339-019-2470-7Search in Google Scholar

[6] S. Anas, J. Ambily, R. Metz, S. Ananthakumar: Mater. Chem. Phys. 134 (2012) 435. DOI:10.1016/j.matchemphys.2012.03.01410.1016/j.matchemphys.2012.03.014Search in Google Scholar

[7] Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue: Cryst. Growth Des. 7 (2007) 2467. DOI:10.1021/cg060934k10.1021/cg060934kSearch in Google Scholar

[8] S. Anas, K.V. Mahesh, P. Parsanth, Jobin, S. Ananthakumar: J. Mater. Chem. C 1 (2013) 6455. DOI:10.1039/C3TC31049C10.1039/C3TC31049CSearch in Google Scholar

[9] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao: Adv. Mater. 21 (2009) 4087. DOI:10.1002/adma.20080382710.1002/adma.200803827Search in Google Scholar

[10] X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li: ACS Nano, 4 (2010) 3302. DOI:10.1021/nn100154710.1021/nn1001547Search in Google Scholar PubMed

[11] S. Balanand, M.J. Maria, T.P.D. Rajan, A.P. Mohamed, S. Ananthakumar: Chem. Eng. J. 284 (2016) 657. DOI:10.1016/j.cej.2015.08.16310.1016/j.cej.2015.08.163Search in Google Scholar

[12] S. Anas, P.V. Nair, K.V. Mahesh, V. Linsha, A. Shuhailath, A.P. Mohamed, K.G.K. Warrier, S. Ananthakumar: Mater. Des. 141 (2018) 267. DOI:10.1016/j.matdes.2017.12.04210.1016/j.matdes.2017.12.042Search in Google Scholar

[13] C. Xu, P. Shin, L. Cao, D. Gao: J. Phys. Chem. C 114 (2010) 125. DOI:10.1021/jp908541510.1021/jp9085415Search in Google Scholar

[14] B. Wen, Y. Huang, J.J. Boland, J. Phys. Chem. C 112 (2008) 106. DOI:10.1021/jp076789i10.1021/jp076789iSearch in Google Scholar

[15] Q. Zhou, J.Z. Wen, P. Zhao, W.A. Anderson: Nanomaterials 7 (2017) 9. PMid:28914819; DOI:10.3390/nano701000910.3390/nano7010009Search in Google Scholar PubMed PubMed Central

[16] A.I. Hochbaum, P. Yang: Chem. Rev. 110 (2010) 527. PMid:19817361; DOI:10.1021/cr900075v10.1021/cr900075vSearch in Google Scholar PubMed

[17] R. Parize, J. Garnier, O. Chaix-Pluchery, C. Verrier, E. Appert, V. Consonni: J. Phys. Chem. C 120 (2016) 5242. DOI:10.1021/acs.jpcc.6b0047910.1021/acs.jpcc.6b00479Search in Google Scholar

[18] G. Shen, P.-C. Chen, K. Ryu, C. Zhou: J. Mater. Chem. 19 (2009) 828. DOI:10.1039/B816543B10.1039/B816543BSearch in Google Scholar

[19] T. Darmanin, F. Gittard: J. Mater. Chem A 2 (2014) 16319. DOI:10.1039/C4TA02071E10.1039/C4TA02071ESearch in Google Scholar

[20] L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P. Yang: Inorg. Chem. 45 (2006) 7535. DOI:10.1021/ic060190010.1021/ic0601900Search in Google Scholar PubMed

[21] X.W. Sun, J.X. Wang: Nano Lett. 8 (2008) 1884. DOI:10.1021/nl080485610.1021/nl0804856Search in Google Scholar PubMed

[22] S. Anas, S. Rahul, K.B. Babitha, R.V. Mangalaraja, S. Ananthakumar: Appl. Surf. Sci. 355 (2015) 98. DOI:10.1016/j.apsusc.2015.07.05810.1016/j.apsusc.2015.07.058Search in Google Scholar

[23] C. Li, G. Fang, J. Li, L. Ai, B. Dong, X. Zhao: J. Phys. Chem. C 112 (2008) 990. DOI:10.1021/jp077133τ10.1021/jp077133τSearch in Google Scholar

[24] W. Wu, G. Hu, S. Cui, Y. Zhou, H. Wu: Cryst. Growth Des. 8 (2008) 4014. DOI:10.1021/cg800210 ν10.1021/cg800210νSearch in Google Scholar

[25] V. Strano, R.G. Urso, M. Scuderi, K.O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella: J. Phys. Chem. C 118 (2014) 28189. DOI:10.1021/jp507496a10.1021/jp507496aSearch in Google Scholar

[26] J.T. Simpson, S.R. Hunter, T. Aytug: Rep. Prog. Phys. 78 (2015) 086501. PMid:26181655; DOI:10.1088/0034-4885/78/8/08650110.1088/0034-4885/78/8/086501Search in Google Scholar PubMed

[27] L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang: Nano Lett. 5 (2005) 1231. PMid:16178216; DOI:10.1021/nl050788p10.1021/nl050788pSearch in Google Scholar PubMed

[28] Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, X. Fan: J. Phys. Chem. B 110 (2006) 20263. DOI:10.1021/jp063312i10.1021/jp063312iSearch in Google Scholar PubMed

[29] V. Gerbreders,M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, A. Ogurcovs: Cryst. Eng. Comm. 22 (2020) 1346. DOI:10.1039/C9CE01556F10.1039/C9CE01556FSearch in Google Scholar

[30] W. Peng, S. Qu, G. Cong, Z. Wang: Cryst. Growth Des. 6 (2006) 1518. DOI:10.1021/cg050526110.1021/cg0505261Search in Google Scholar

[31] S. Anas, M.J. Reshma, P.R. Dhanasree, N. Fathima, E. Soumya, Mater. Today- Proc. DOI:10.1016/j.matpr.2020.05.77110.1016/j.matpr.2020.05.771Search in Google Scholar

[32] D. Pradhan, M. Kumar, Y. Ando, K.T. Leung: ACS Appl. Mater. Interfaces 1 (2009) 789 –796. PMid:20356003; DOI:10.1021/am800220v10.1021/am800220vSearch in Google Scholar PubMed

[33] J. Song, S. Lim: J. Phys. Chem. C 111 (2007) 596. DOI:10.1021/jp065501710.1021/jp0655017Search in Google Scholar

[34] J. Liu, J. She, S. Deng, J. Chen, N. Xu: J. Phys. Chem. C 112 (2008) 11685. DOI:10.1021/jp801556310.1021/jp8015563Search in Google Scholar

Received: 2020-05-29
Accepted: 2020-09-08
Published Online: 2021-12-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.12.2023 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-7925/html
Scroll to top button