Accessible Unlicensed Requires Authentication Published by De Gruyter March 18, 2021

Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding

Yan Zhang, DeShui Yu, JianPing Zhou, DaQian Sun and HongMei Li

Abstract

To avoid the formation of Ti-Ni intermetallics in a joint, three laser welding processes for Ti alloy–NiTi alloy joints were introduced. Sample A was formed while a laser acted at the Ti alloy–NiTi alloy interface, and the joint fractured along the weld centre line immediately after welding without filler metal. Sample B was formed while the laser acted on a Cu interlayer. The average tensile strength of sample B was 216 MPa. Sample C was formed while the laser acted 1.2 mm on the Ti alloy side. The one-pass welding process involved the creation of a joint with one fusion weld and one diffusion weld separated by the remaining unmelted Ti alloy. The mechanical performance of sample C was determined by the diffusion weld formed at the Ti alloy–NiTi alloy interface with a tensile strength of 256 MPa.


Yan Zhang PhD Master Instructor School of Mechanical Engineering State Key Laboratory for Manufacturing Systems Engineering China Xinjiang University Wulumuqi 830000 P. R. China Tel.: +86-10-2343-4456

References

[1] D.Z. Yang: Mater. Des. 21 (2000) 503. DOI:10.1016/S0261-3069(00)00008-X10.1016/S0261-3069(00)00008-XSearch in Google Scholar

[2] T. Duerig, A. Pelton, D. Stöckel: Mater. Sci. Eng. A 149–60 (1999) 273. DOI:10.1016/S0921-5093(99)00294-410.1016/S0921-5093(99)00294-4Search in Google Scholar

[3] G.B. Brook: Mater. Des. 4 (1983) 835. DOI:10.1016/0261-3069(83)90185-110.1016/0261-3069(83)90185-1Search in Google Scholar

[4] M. Gao, S.W. Mei, Z.M. Wang, X.Y. Li, X.Y. Zeng: Sci. Technol. Weld. Join. 17 (2012) 269. DOI:10.1179/1362171812Y.000000000210.1179/1362171812Y.0000000002Search in Google Scholar

[5] M. Gao, Z.M. Wang, X.Y. Li, X.Y. Zeng: Metall. Mater. Trans. A, 43 (2011) 163. DOI:10.1007/s11661-011-0825-610.1007/s11661-011-0825-6Search in Google Scholar

[6] A. Shojaei Zoeram, S.A.A: Mater. Des. 61 (2014) 185. DOI:10.1016/j.matdes.2014.04.07810.1016/j.matdes.2014.04.078Search in Google Scholar

[7] M.J. Donachie Jr.: Titanium a technical guide. Metals Park, OH: ASM International; 1989.Search in Google Scholar

[8] A. Squillace, U. Prisco, S. Ciliberto, A. Astarita: J. Mater. Process Technol. 212 (2012) 427. DOI:10.1016/j.jmatprotec.2011.10.00510.1016/j.jmatprotec.2011.10.005Search in Google Scholar

[9] S.H. Wang, M.D. Wei, L.W. Tsay: Mater Lett. 57 (2003) 1815. DOI:10.1016/S0167-577X(02)01074-110.1016/S0167-577X(02)01074-1Search in Google Scholar

[10] T. Saburi, S. Nenno, T. Fukuda: J. Less-Common Met. 125 (1986) 157. DOI:10.1016/0022-5088(86)90090-110.1016/0022-5088(86)90090-1Search in Google Scholar

[11] ASM Handbook. ASM specialty handbook. Alloys phase diagrams, vol. 3. Metals Park, OH: ASM International; 1992. 327.Search in Google Scholar

[12] G. Casalino, F. Curcio, F. Memola, C. Minutolo: J. Mater. Process Technol. 167 (2005) 422. DOI:10.1016/j.jmatprotec.2005.05.03110.1016/j.jmatprotec.2005.05.031Search in Google Scholar

[13] Y. Zhang, D.Q. Sun, X.Y. Gu: Mater. Lett., 185 (2016) 152. DOI:10.1016/j.matlet.2016.08.13810.1016/j.matlet.2016.08.138Search in Google Scholar

[14] Y. Zhang, Y.K. Chen, J.P. Zhou, D.Q. Sun: Journal of Materials Research and Technology 9 (2020) 465. DOI:10.1016/j.jmrt.2019.10.07510.1016/j.jmrt.2019.10.075Search in Google Scholar

[15] Y. Zhang, Y.K. Chen, J.P. Zhou, D.Q. Sun: Mater. Lett. 216 (2020) 12698. DOI:10.1016/j.matlet.2019.12698610.1016/j.matlet.2019.126986Search in Google Scholar

[16] I. Tomashchuk, P. Sallamand, H. Andrzejewski, D. Grevey: Inter-metallics 19 (2011) 1466. DOI:10.1016/j.intermet.2011.05.01610.1016/j.intermet.2011.05.016Search in Google Scholar

[17] H.M. Li, D.Q. Sun, X.L. Cai, P. Dong: Mater. Des. 39 (2012) 285. DOI:10.1016/j.matdes.2012.02.03110.1016/j.matdes.2012.02.031Search in Google Scholar

[18] Y. Zhang, H.Y. Zeng, J.P. Zhou, D.Q. Sun: 131 (2020) 106372. DOI:10.1016/j.optlastec.2020.10637210.1016/j.optlastec.2020.106372Search in Google Scholar

[19] R.H. Bricknell, K.N. Melton, O. Mercier: Metall. Trans. A 10 (1979) 693. DOI:10.1007/BF0265839010.1007/BF02658390Search in Google Scholar

[20] J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda, F.M. Braz Fernandes: Acta Mater. 105 (2016) 9. DOI:10.1016/j.actamat.2015.12.02110.1016/j.actamat.2015.12.021Search in Google Scholar

[21] B. Panton, A. Pequegnat, Y. Norman Zhou: Metall. Mater. Trans. A, 45 (2014) 3533. DOI:10.1007/s11661-014-2280-710.1007/s11661-014-2280-7Search in Google Scholar

[22] Y. Zhang, Y.D. Gao, J.P. Zhou, D.Q. Sun: Journal of Materials Research and Technology 9 (2020) 1340. DOI:10.1016/j.jmrt.2019.11.06010.1016/j.jmrt.2019.11.060Search in Google Scholar

[23] Y.Zhang, D.Q. Sun, X.Y. Gu: J. Mater. Sci. 53 (2018) 2942. DOI:10.1007/s00170-017-0997-310.1007/s00170-017-0997-3Search in Google Scholar

[24] Y. Zhang, D.Q. Sun, X.Y. Gu, Y.J. Liu: Int. J. Adv. Manuf. Technol. 90 (2017) 953. DOI:10.1007/s00170-016-9453-z10.1007/s00170-016-9453-zSearch in Google Scholar

Received: 2020-06-05
Accepted: 2020-11-17
Published Online: 2021-03-18

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany