Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 10, 2021

Effect of TiO2 crystal form on the denitration performance of Ce–W–Ti catalyst

Xue Bian EMAIL logo , Yuntao Yu , Nana Hao and Wenyuan Wu


Titanium dioxide supports, which were prepared by roasting metatitanic acid under different conditions, were used to prepare a series of Ce–W–Ti catalysts. The structure and denitration properties of the catalyst were studied. The results showed that TiO2 had different crystal types (mixed crystal phases with different proportions of anatase and rutile) under different roasting conditions, and the denitration efficiency of mixed crystal was better than that of pure phase TiO2. Ce–W/200 °C-1 hTiO2 catalyst exhibited a prominent NO conversion rate, and it can reach higher than 90% at a temperature range from 250 to 500°C. The large specific surface area, low content of rutile TiO2 in the support, high content of chemical adsorbed oxygen and high surface acidity were favorable to denitration performance of Ce–W–Ti catalyst.

School of Metallurgy Northeastern University Shenyang 110819 P. R. China Tel.: +86-24-13840050394


[1] C.W. Shi, J.J. Liu, W.Y. Wu, X. Bian, P. Chen, Z.X. Yang, C.T. Lu: Catal. 9 (2019) 777. DOI:10.3390/catal909077710.3390/catal9090777Search in Google Scholar

[2] L.Y Song, H. He, J. Li, W.G. Qiu: J. Rare Earths. 35 (2017) 69–82. DOI:10.11785/1000-4343.2017010710.11785/1000-4343.20170107Search in Google Scholar

[3] T. Zhou, S.G. Liu, M.Z. Tang, C.W. Chen,Y.S. Xu, J.M. Wu: J. Chin. Ceram. Soc. 37 (2009) 317–324. DOI:10.3321/j.issn:0454-5648.2009.02.02910.3321/j.issn:0454-5648.2009.02.029Search in Google Scholar

[4] S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, W. Weisweiler: Catal. Today. 113 (2006) 208–214. DOI:10.1016/j.cattod.2005.11.06710.1016/j.cattod.2005.11.067Search in Google Scholar

[5] X.B. Wang, R.B. Duan, W. Liu, D.W. Wang, B.R. Wang, Y.R. Xu, C.H. Niu, J.W. Shi: Appl. Surf. Sci. 510 (2020) 145517. DOI:10.1016/j.apsusc.2020.14551710.1016/j.apsusc.2020.145517Search in Google Scholar

[6] K.H. Chen, Y. He, C. Srinivasakannan, S.W. Li, S.H. Yin, J.H. Peng, S.H. Guo, L.B. Zhang: Chem. Eng. J. 356 (2019) 453–460. DOI:10.1016/j.cej.2018.09.03910.1016/j.cej.2018.09.039Search in Google Scholar

[7] T.K. Ma, G.R. Fang, L.B. Meng, L. Wang: J. Chin. Ceram. Soc. 35 (2016) 1733–1743. DOI:10.16552/j.cnki.issn1001-1625.2016. in Google Scholar

[8] G.M. Jiang, J.K. Yan, G. Yang, Z.C. Duan, K.Y. Kang, J.H. Du, G.Y. Gan, J.H. Yi: Mater. Rep. 30 (2016) 95–100. DOI:10.11896/j.issn.1005-023X.2016.19.01410.11896/j.issn.1005-023X.2016.19.014Search in Google Scholar

[9] Y.L. Huang, Y.L. Wang, L.P. Zhang: Atmos. Environ. 42 (2008) 3740–3750. DOI:10.1016/j.atmosenv.2007.12.06310.1016/j.atmosenv.2007.12.063Search in Google Scholar

[10] J.W. Huang, Z. Li: Metallurgical industry press, Beijing (2012) 95.Search in Google Scholar

[11] J.J. Zhang, J. Hou: J. Bingtuan. Edu. 17 (2007) 34–35. DOI:10.3969/j.issn.1009-1548.2007.01.01010.3969/j.issn.1009-1548.2007.01.010Search in Google Scholar

[12] D.A. Pena, B.S. UPhade, P.G. Smirniotis: J. Catal. 221 (2004) 421–431. DOI:10.1016/j.jcat.2003.09.00310.1016/j.jcat.2003.09.003Search in Google Scholar

[13] L.H. Edelson, A.M. Glaeser: J. Am. Ceram. Soc. 71 (2005) 225– 235. DOI:10.1111/j.1151-2916.1988.tb05852.x10.1111/j.1151-2916.1988.tb05852.xSearch in Google Scholar

[14] T.F. Xu, X.D. Wu, Y.X. Gao, Q.W. Lin, J.f. Hu, D. Weng: Catal. Commun. 93 (2017) 33–36. DOI:10.1016/j.catcom.2017.01.02110.1016/j.catcom.2017.01.021Search in Google Scholar

[15] A. Katarzyna, M. Michalow, L. Ye, K. Kazimierz, G. Thomas, N. Maarten, K. Oliver, F. Davide: ACS Catal. 5 (2015) 5657–5672. DOI:10.1021/acscatal.5b0158010.1021/acscatal.5b01580Search in Google Scholar

[16] W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang: Appl. Catal. B-Environ. 115–116 (2012) 100–106. DOI:10.1016/j.apcatb.2011.12.01910.1016/j.apcatb.2011.12.019Search in Google Scholar

[17] P.R. Ettreddy, N. Ettreddy, S. Mamedov, P. Boolchand, G.P. Smirniotis: Appl. Catal. B-Environ. 76 (2007) 123– 134. DOI:10.1016/j.apcatb.2007.05.01010.1016/j.apcatb.2007.05.010Search in Google Scholar

[18] L. Zhang, J.F. Sun, Y. Xiong, X.Q. Zeng, C.J. Tang, L. Dong: Chin. J. Catal. 38 (2017) 1749–1758. DOI:10.1016/S1872-2067(17)62887-010.1016/S1872-2067(17)62887-0Search in Google Scholar

[19] Y. Jiang, Z.M. Xing, X.C. Wang, S.B. Huang, X.W.Wang, Q.Y. Liu: Fuel. 151 (2015) 124–129. DOI:10.1016/j.fuel.2015.01.06110.1016/j.fuel.2015.01.061Search in Google Scholar

[20] L. Chen, D. Weng, Z.C. Si, X.D. Wu: Prog. Nat. Sci. 22 (2012) 265–272. DOI:10.1016/j.pnsc.2012.07.00410.1016/j.pnsc.2012.07.004Search in Google Scholar

[21] Y. Geng, H.L. Huang, X.L. Chen, H.Y. Ding, S.J. Yang, F.D. Liu, W.P. Shan: RSC Adv. 6 (2016) 64803–64810. DOI:10.1039/c6ra06392f10.1039/c6ra06392fSearch in Google Scholar

[22] S.H. Zhan, H. Zhang, Y. Zhang, Q. Shi, Y. Li, X.J. Li: Appl. Catal. B-Environ. 203 (2017) 199–209. DOI:10.1016/j.apcatb.2016.10.01010.1016/j.apcatb.2016.10.010Search in Google Scholar

[23] X.B. Zhu, Y.L. Wang, Y. Huang, Y.X. Gai: App. Sci. 8 (2018) 2430. DOI:10.3390/app812243010.3390/app8122430Search in Google Scholar

[24] G.Y. Xie, Z.Y. Liu, Z.P. Zhu, Q.Y. Liu, J. Ge, Z.G. Huang: J. Catal. 224 (2004) 36–41. DOI:10.1016/j.jcat.2004.02.01510.1016/j.jcat.2004.02.015Search in Google Scholar

[25] M.A. Centeno, I. Carrizosa, J.A. Odriozola: Appl. Catal. B-Environ. 19 (1998) 67–73. DOI:10.1016/S0926-3373(98)00059-910.1016/S0926-3373(98)00059-9Search in Google Scholar

[26] L. Lietti, P. Forzatti, F. Bregani: Ind. Eng. Chem. Res. 35 (1996) 3884–3892. DOI:10.1021/ie960158l10.1021/ie960158lSearch in Google Scholar

[27] L. Lietti, I. Nova, P. Forzatti: Top. Catal. 11 (2000) 111–122. DOI:10.1023/A:102721761294710.1023/A:1027217612947Search in Google Scholar

Received: 2020-06-15
Accepted: 2020-11-11
Published Online: 2021-03-10

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 30.11.2022 from
Scroll Up Arrow