Accessible Unlicensed Requires Authentication Published by De Gruyter August 26, 2021

DFT study of electronic and thermodynamic properties of gold-rich intermetallic compounds, Ce2Au2Cd and CeAu4Cd2

Jyoti Sagar, Reetu Singh, Vijay Kumar, Sanjay Kumar, Manish P. Singh and Rishi P. Singh

Abstract

Gold-rich rare earth intermetallic compounds (viz. Ce2Au2Cd and CeAu4Cd2) show unusual magnetic and physical properties, and they have extensive applications in electronic and mechanical industries due to their good electronic and thermal behavior with high mechanical strength. In the present research article, to take full advantage of technological importance of these materials, we have investigated the structural, electronic and thermodynamic properties of Ce2Au2Cd and CeAu4Cd2 ternary intermetallic compounds using density functional theory (DFT). The electronic band structure and density of state calculations show that Ce-f orbital electrons provide metallic character to both the compounds with strong hybridization of Au-p and Cd-p orbitals at the Fermi level. The effect of temperature has been studied on the various thermodynamic parameters using the quasi-harmonic Debye model. Thermodynamic properties show that CeAu4Cd2 compound has larger mechanical resistance (or high mechanical strength or hardness) and smaller randomness compared to Ce2Au2Cd with respect to temperature.


Jyoti Sagar Department of Chemistry S.S.V. College (affiliated to Chaudhary Charan Singh University Meerut) U.P.- India Tel.: +91-8439391677

References

[1] C.L. Gan: Int. 31 (2014) 121. DOI:10.1108/MI-07-2013-0036 Search in Google Scholar

[2] V. Chidambaram, H.B. Yeung, G. Shan: J. Electron. Mater. 41 (2012) 2107. DOI:10.1007/s11664-012-2114-6 Search in Google Scholar

[3] N. Ning: Gold. Bull. 34 (2001) 77. DOI:10.1007/BF03214818 Search in Google Scholar

[4] T. Block, M. Johnscher, S. Linsinger, Ch. Rodewald Ute, R. Pöttgen: Z. Naturforsch 70 (2015) 135. DOI:10.1515/znb-2014-0225 Search in Google Scholar

[5] F. Tappe, R. Pöttgen: Rev. Inorg. Chem. 31 (2011) 5. DOI:10.1515/revic.2011.007 Search in Google Scholar

[6] S. Cotton, in: Lanthanide and Actinide Chemistry, John Wiley & Sons (2013). Search in Google Scholar

[7] A. Murugan: J. Magn. Magn. Mater. 385 (2015) 441. DOI:10.1016/j.jmmm.2015.03.042 Search in Google Scholar

[8] R. Mishra, R. Pöttgen, R.D. Hoffman, D. Kaczorowski: Z. anorg. Allg. Chem. 627 (2001) 1283. DOI:10.1002/1521-3749(200106)627 : 6<1283::AID-ZAAC1283>3.0.CO;2-L Search in Google Scholar

[9] C. Paulsen, T. Block, C. Benndorf, O. Oeckler, J. Bönnighausen, O. Janka, R. Pöttgen: Z. Naturforsch. 75 (2020) 73. DOI:10.1515/znb-2019-0153 Search in Google Scholar

[10] P. Chai.J.D. Corbett: Inorg. Chem. 51 (2012) 3548. PMid:22364120; DOI:10.1021/ic202342v Search in Google Scholar

[11] C.R. Celania: Novel gold intermetallics with unique properties and bonding patterns, Graduate Theses and, Dissertations, degree of doctor of Philosophy: Materials Science and Engineering, Iowa State University (2017). DOI:10.2172/1417986 Search in Google Scholar

[12] M. Lukachuk, R. Pöttgen: Z. Kristallogr. 218 (2003) 767. DOI:10.1524/zkri.218.12.767.20545 Search in Google Scholar

[13] S.E. Latturner, D. Bilc, J.R. Ireland, C.R. Kannewurf, S.D. Mahanti, M.G. Kanatzidis: J. Sol. St. Chem. 170 (2003) 48. DOI:10.1016/S0022-4596(02)00006-3 Search in Google Scholar

[14] F.D. Murnaghan: Proc. Nat. Acad. Sci. U.S.A.3 (1944) 244. DOI:10.1073/pnas.30.9.244 Search in Google Scholar

[15] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström: Phys. Rev. B. 64 (2001) 195134. DOI:10.1103/PhysRevB.64.195134 Search in Google Scholar

[16] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, L. Marks: WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Techn. Universitat (2019). Search in Google Scholar

[17] J.P. Perdew, K. Burke, M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865. PMid:10062328; DOI:10.1103/PhysRevLett.77.3865 Search in Google Scholar

[18] A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña: Comput. Phys. Comm. 182 (2001) 2232. DOI:10.1016/j.cpc.2011.05.009 Search in Google Scholar

[19] A. Otero-de-la-Roza, V. Luaña: Phys. Rev. B 84 (2011) 184103. DOI:10.1103/PhysRevB.84.024109 Search in Google Scholar

[20] A.L. Wasserman: in Reference Module in Materials Science and Materials Engineering (2017). Search in Google Scholar

[21] W.A. Harrison: Electronic Structure and the Properties of Solids (1989). Search in Google Scholar

[22] J. Diani, B. Fayolle, P. Gilormini: Taylor & Francis 34 (2008) 1143. DOI:10.1080/08927020801993388 Search in Google Scholar

[23] C. Li, Z. Wang: Advances in Science and Technology of Mn+1AXn Phases, 1st edition (2012). Search in Google Scholar

[24] Pohl, O. Robert: Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York (2014). Search in Google Scholar

[25] S. Rayaprol, R. Pöttgen: Phys. Rev. B 72 (2005) 214435. DOI:10.1103/PhysRevB.72.214435 Search in Google Scholar

[26] L. Lou: Introduction to Phonons and Electrons, World Scientific Publishing, Singapore (2003). DOI:10.1142/5327 Search in Google Scholar

[27] M. Biron: Detailed Accounts of Thermoplastics and Thermoplastic Composites (Third Edition) (2018). DOI:10.1016/B978-0-08-102501-7.00004-7 Search in Google Scholar

[28] N. Shulumba: Vibrations in solids from first principles lattice dynamics to high temperature phase stability Nanostructured Materials, Department of Physics, Chemistry and Biology, Linköping University, Sweden (2015). DOI:10.3384/diss.diva-122949 Search in Google Scholar

Received: 2020-06-20
Accepted: 2021-05-27
Published Online: 2021-08-26
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany