Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2021

Preparation of ZnO nanoflakes and assessment of their removal of HCN, NO2 and SO2 toxic gases

  • Thi Hanh Nguyen , Xuan Manh Pham , Thanh Nhan Nguyen EMAIL logo , Nhung Hac Thi , Tuyet Anh DangThi , Quang Vinh Tran , Anh Tuan Vu , Mai Ha Hoang EMAIL logo and Tuyen Van Nguyen

Abstract

Zinc oxide nanoflakes were synthesized using the wet precipitation method from aqueous solutions of zinc nitrate and sodium hydroxide. The obtained materials were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption–desorption methods. The presence of sodium lauryl sulfate in the preparation of zinc oxide resulted in thinner, larger size, and higher specific surface area nanoflakes. The saturated adsorption capacities of zinc oxide nanoflakes for HCN, NO2, and SO2 were 216 mg g–1, 81 mg g–1, and 38 mg g–1, respectively. These results suggest that the material is a potential candidate for the removal of these toxic gases.


Prof. Tuyen Van Nguyen Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet street Cau Giay district Hanoi, Vietnam Tel.: +84 24 3791 4648 Fax: +84 24 3836 1283
Dr. Mai Ha Hoang Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet street Cau Giay district, Hanoi Vietnam Tel.: +84 24 38361282 Fax: +84 24 3836 1283

References

[1] K. Anseeuw, N. Delvau, G. Burillo-Putze, F. De Iaco, G. Geldner, P. Holmstrom, Y. Lambert, M. Sabbe: Eur. J. Emerg. Med. 20 (2013) 2–9. DOI:10.1097/MEJ.0b013e328357170b10.1097/MEJ.0b013e328357170bSearch in Google Scholar

[2] Y. Alarie: Crit. Rev. Toxicol. 32 (2002) 259 –289. PMid:12184505; DOI:10.1080/2002409106424610.1080/20024091064246Search in Google Scholar

[3] S. Kumagai, T. Hosaka, T. Kameda, T. Yoshioka: J. Anal. Appl. Pyrolysis 123 (2017) 330–339. DOI:10.1016/j.jaap.2016.11.01210.1016/j.jaap.2016.11.012Search in Google Scholar

[4] C. Frilund, P. Simell, N. Kaisalo, E. Kurkela, M.-L. Koskinen-Soivi: Energ. Fuel. 34 (2020) 3316–3325. PMid:32296261; DOI:10.1021/acs.energyfuels.9b0427610.1021/acs.energyfuels.9b04276Search in Google Scholar

[5] M.B. Chang, H.M. Lee, F. Wu, C.R. Lai: J. Air Waste Manag. Assoc. 54 (2004) 941–949. DOI:10.1080/10473289.2004.1047088910.1080/10473289.2004.10470889Search in Google Scholar

[6] E. Rezaei, B. Schlageter, M. Nemati, B. Predicala: J. Environ. Chem. Eng. 5 (2017) 422–431. DOI:10.1016/j.jece.2016.12.02610.1016/j.jece.2016.12.026Search in Google Scholar

[7] Z. Goharibajestani, A. Yürüm, Y. Yürüm: Appl. Surf. Sci. 475 (2019) 1070–1076. DOI:10.1016/j.apsusc.2019.01.05210.1016/j.apsusc.2019.01.052Search in Google Scholar

[8] J. Sawai, T. Yoshikawa: J. Appl. Microbiol. 96 (2004) 803 –809. PMid:15012819; DOI:10.1111/j.1365-2672.2004.02234.x10.1111/j.1365-2672.2004.02234.xSearch in Google Scholar

[9] N.L. Rosi, C.A. Mirkin: Chem. Rev. 105 (2005) 1547–1562. PMid:15826019; DOI:10.1021/cr030067f10.1021/cr030067fSearch in Google Scholar

[10] R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet: Nano Lett. 6 (2006) 866–870. PMid:16608300; DOI:10.1021/nl052326h10.1021/nl052326hSearch in Google Scholar

[11] A. Kolodziejczak-Radzimska, T. Jesionowski: Materials 7 (2014) 2833 –2881. PMid:28788596; DOI:10.3390/ma704283310.3390/ma7042833Search in Google Scholar

[12] W. An, X. Wu, X.C. Zeng: J. Phys. Chem. C 112 (2008) 5747 – 5755. DOI:10.1021/jp711044s10.1021/jp711044sSearch in Google Scholar

[13] M.N. Zafar, Q. Dar, F. Nawaz, M.N. Zafar, M. Iqbal, M.F. Nazar: J. Mater. Sci. Technol. 8 (2019) 713–725. DOI:10.1016/j.jmrt.2018.06.00210.1016/j.jmrt.2018.06.002Search in Google Scholar

[14] G. Yuvaraja, C. Prasad, Y. Vijaya, M.V. Subbaiah: Int. J. Ind. Chem. 9 (2018) 17 –25. DOI:10.1007/s40090-018-0136-510.1007/s40090-018-0136-5Search in Google Scholar

[15] T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna, T.G. Venkatesha: Powder Technol. 217 (2012) 163–170. DOI:10.1016/j.powtec.2011.10.02310.1016/j.powtec.2011.10.023Search in Google Scholar

[16] Z. Monsef Khoshhesab, S. Souhani: J. Chin. Chem. Soc. 65 (2018) 1482–1490. DOI:10.1002/jccs.20170047710.1002/jccs.201700477Search in Google Scholar

[17] S.B. Khan, M.M. Rahman, H.M. Marwani, A.M. Asiri, K.A. Alamry: Nanoscale Res. Lett. 8 (2013) 377. PMid:24011201; DOI:10.1186/1556-276X-8-37710.1186/1556-276X-8-377Search in Google Scholar

[18] S. Pouralhosseini: Petrol. Sci. Technol. 31 (2013) 62–67. DOI:10.1080/10916466.2010.52374110.1080/10916466.2010.523741Search in Google Scholar

[19] P. Li, Y. Wei, H. Liu, X.-K. Wang: J. Solid State Chem. 178 (2005) 855–860. DOI:10.1016/j.jssc.2004.09.03710.1016/j.jssc.2004.09.037Search in Google Scholar

[20] S. Azizi, M. Mahdavi Shahri, R. Mohamad: Molecules 22 (2017) 831–844. PMid:28594362; DOI:10.3390/molecules2202030110.3390/molecules22020301Search in Google Scholar

[21] N. Samaele, P. Amornpitoksuk, S. Suwanboon: Powder Technol. 203 (2010) 243–247. DOI:10.1016/j.powtec.2010.05.01410.1016/j.powtec.2010.05.014Search in Google Scholar

[22] G. Sun, M. Cao, Y. Wang, C. Hu, Y. Liu, L. Ren, Z. Pu: Mater. Lett. 60 (2006) 2777 –2782. DOI:10.1016/j.matlet.2006.01.08810.1016/j.matlet.2006.01.088Search in Google Scholar

[23] Y. Ni, G. Wu, X. Zhang, X. Cao, G. Hu, A. Tao, Z. Yang, X. Wei: Mater. Res. Bull. 43 (2008) 2919 –2928. DOI:10.1016/j.materresbull.2007.02.01910.1016/j.materresbull.2007.02.019Search in Google Scholar

[24] M.S. Bakshi: Cryst. Growth Des. 16 (2016) 1104–1133. DOI:10.1021/acs.cgd.5b0146510.1021/acs.cgd.5b01465Search in Google Scholar

[25] R. Kato, J. Rolfe: J. Chem. Phys. 47 (1967) 1901–1910. DOI:10.1063/1.171221610.1063/1.1712216Search in Google Scholar

[26] C. Sedlmair, B. Gil, K. Seshan, A. Jentys, J.A. Lercher: Phys. Chem. Chem. Phys. 5 (2003) 1897–1905. DOI:10.1039/B209325A10.1039/B209325ASearch in Google Scholar

[27] J.A. Rodriguez, T. Jirsak, G. Liu, J. Hrbek, J. Dvorak, A. Maiti: J. Am. Chem. Soc. 123 (2001) 9597–9605. DOI:10.1021/ja002796810.1021/ja0027968Search in Google Scholar

[28] R.N. Spitz, J.E. Barton, M.A. Barteau, R.H. Staley, A.W. Sleight: J. Phys. Chem. 90 (1986) 4067 –4075. DOI:10.1021/j100408a04710.1021/j100408a047Search in Google Scholar

[29] M. Casarin, C. Maccato, G. Tabacchi, A. Vittadini: Surf. Sci. 352–354 (1996) 341–345. DOI:10.1016/0039-6028(95)01157-910.1016/0039-6028(95)01157-9Search in Google Scholar

Received: 2020-07-14
Accepted: 2020-09-14
Published Online: 2021-02-19

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-7990/html
Scroll to top button