Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter October 15, 2021

Evaluation of effect of synthesis parameters on the morphology of nano-structures of magnesium oxide coated with carbon

Glaucea Warmeling Duarte, Gustavo Lopes Colpani, Luciano Luiz Silva, Cíntia Soares, Márcio Antônio Fiori and Humberto Gracher Riella

Abstract

In this study, the influence of the synthesis parameters on the microstructural properties of nanoparticles of magnesium oxide coated with carbon was investigated. The nanostructures were produced in a one-step synthesis procedure, following a sol-gel method, and the effects of the molar ratio between magnesium nitrate and glucose, the temperature and the dripping time on the morphology of the nanostructures formed were analyzed. The results indicate that an increase in carbon concentration, synthesis temperature around 60 °C and 4 h of dripping time favor the formation of small agglomerates of nanoparticles with greater carbon coating homogeneity. In general, high synthesis temperatures favor the kinetic aspects of crystallization and produce nanostructures with a larger crystallite size. On the other hand, altering the dripping time was not efficient in changing the morphology of the nanostructures obtained. In addition, increasing the carbon concentration favors the formation of structures with small surface area and pore volume.


Dr. Glaucea Warmeling Duarte Programa de Pós Graduação em Engenharia Química Universidade Federal de Santa Catarina – UFSC Eng. Agronômico Andrei Cristian Ferreira, s/n. Florianópolis/SC, 88040-900 Brazil

References

[1] M.A. Shah, A. Qurashi: J. Alloys Compd. 482 (2009) 548. DOI:10.1016/j.jallcom.2009.04.12910.1016/j.jallcom.2009.04.129Search in Google Scholar

[2] M.K. Patel, M.A. Ali, M. Zafaryab, V.V. Agrawal, M.M.A. Rizvi, Z.A. Ansari, S.G. Ansari, B.D. Malhotra: Biosens. Bioelectron. 45 (2013) 181. PMid:23500361; DOI:10.1016/j.bios.2012.12.05510.1016/j.bios.2012.12.055Search in Google Scholar

[3] N.B. Arun Kumar, B. Mahendra, J. Sirajudeeen, M.R. Anil Kumar, H.P. Nagaswarupa, C.R. Ravi Kumar, B. Umesh: Mater. Today Proc. 5 (2018) 22275. DOI:10.1016/j.matpr.2018.06.59310.1016/j.matpr.2018.06.593Search in Google Scholar

[4] V. Safarifard, A. Morsali: Ultrason. Sonochem. 40 (2018) 921. PMid:28946504; DOI:10.1016/j.ultsonch.2017.09.01410.1016/j.ultsonch.2017.09.014Search in Google Scholar

[5] X. Borgohain, A. Boruah, G.K. Sarma, H. Rashid: J. Mol. Liq. 305 (2020) 112799. DOI:10.1016/j.molliq.2020.11279910.1016/j.molliq.2020.112799Search in Google Scholar

[6] R.A. Yu, Z.Y. He, Y.F.J.X. Qi: Sep. Sci. Technol. 46 (2011) 452. DOI:10.1080/01496395.2010.51012510.1080/01496395.2010.510125Search in Google Scholar

[7] A.M. Azzam, M.A. Shenashen, B.B. Mostafa, A. Wafaa, B. Kandeel, S.A. El-Safty: Environ. Prog. Sustain. Energy 38 (2019) 260. DOI:10.1002/ep.1299910.1002/ep.12999Search in Google Scholar

[8] S. Mohan, V. Kumar, D.K. Singh, S.H. Hasan: J. Environ. Chem. Eng. 5 (2017) 2259. DOI:10.1016/j.jece.2017.03.03110.1016/j.jece.2017.03.031Search in Google Scholar

[9] A. Ghosh, S. Biswas, S. Sikdar, R. Saha: Ind. Eng. Chem. Res. 58 (2019) 10352. DOI:10.1021/acs.iecr.9b0070910.1021/acs.iecr.9b00709Search in Google Scholar

[10] F. Moradnia F, S.F. Taghavi, A. Ramazani, V.K. Gupta: J. Photochem. Photobiol. A Chem. 392 (2020) 112433. DOI:10.1016/j.jphotochem.2020.11243310.1016/j.jphotochem.2020.112433Search in Google Scholar

[11] R. Prasanth, K.S. Dinesh, A. Jayalakshmi, G. Singaravelu, K. Govindaraju, K.V. Ganesh: Indian J. Geo-Marine Sci. 48 (2019) 1210 –5.Search in Google Scholar

[12] S.F. Taghavi, R. Forootan, F. Moradnia, Z. Afshari, A. Ramazani: Mater. Res. Express. 7 (2020).Search in Google Scholar

[13] X. Tang, L. Guo, C. Chen, Q. Liu, T. Li, Y. Zhu: J. Solid State Chem. 213 (2014) 32. DOI:10.1016/j.jssc.2014.01.03610.1016/j.jssc.2014.01.036Search in Google Scholar

[14] A.T. Vu, K. Ho, C.H. Lee: Chem. Eng. J. 283 (2016) 1234. DOI:10.1016/j.cej.2015.08.08310.1016/j.cej.2015.08.083Search in Google Scholar

[15] A.F. Bedilo, M.J. Sigel, O.B. Koper, S. Melgunov, K.J. Klabunde: J. Mat. Chem. 12 (2002) 3599. DOI:10.1039/b207972k10.1039/b207972kSearch in Google Scholar

[16] W. Lin, H. Cheng, J. Ming, Y. Yu, F. Zhao: J. Catal. 291 (2012) 149. DOI:10.1016/j.jcat.2012.04.02010.1016/j.jcat.2012.04.020Search in Google Scholar

[17] N. Wang, Z. Yang, F. Xu, K. Thummavichai, H. Chen, Y. Xia, Y. Zhu: Sci. Rep. 7 (2017) 11829. DOI:10.1038/s41598-017-12200-110.1038/s41598-017-12200-1Search in Google Scholar

[18] H.P. Feng, L. Tang, G.M. Zeng, Y. Zhou, Y.C. Deng, X. Ren, B. Song, C. Liang, M.Y. Wei, J.F. Yu: Adv. Colloid Interface Sci. 267 (2019) 26. PMid:30884358; DOI:10.1016/j.cis.2019.03.00110.1016/j.cis.2019.03.001Search in Google Scholar

[19] F. Taleshi, A.A. Hosseini: J. Nanostructure Chem. 3 (2012) 3. DOI:10.1186/2193-8865-3-410.1186/2193-8865-3-4Search in Google Scholar

[20] J.M. Zeng, H. Wang, S.X. Shang, Z. Wang, M. Wang: J. Cryst. Growth 169 (1996) 474.. DOI:10.1016/S0022-0248(96)00411-310.1016/S0022-0248(96)00411-3Search in Google Scholar

[21] M. Motiei, J. Calderon-Moreno, A. Gedanken: Adv. Mater. 14 (2002) 1169. DOI:10.1002/1521-4095(20020816)14 :16<1169::AID-AD-MA1169>3.0.CO;2-L10.1002/1521-4095(20020816)14:16<1169::AID-AD-MA1169>3.0.CO;2-LSearch in Google Scholar

[22] T.K. Kim, K.J. Lee, J. Yuh, S.K. Kwak, J.R. Moon: New J. Chem. 38 (2014)1606. DOI: https://doi.org/10.1039/C4NJ00067F.DOI:10.1039/C4NJ00067F10.1039/C4NJ00067FSearch in Google Scholar

[23] Q. Zhou, J. Yang, Y. Wang, Y. Wu, D. Wang: Mater. Lett. 62 (2008) 1887. DOI:10.1016/j.matlet.2007.10.03110.1016/j.matlet.2007.10.031Search in Google Scholar

[24] D.S. Heroux, A.M. Volodin, V.I. Zaikovski, V.V. Chesnokov, A.F. Bedilo, K.J. Klabunde: J. Phys. Chem. B 108 (2004) 3140. DOI:10.1021/jp036307c10.1021/jp036307cSearch in Google Scholar

[25] M.S. Mel’gunov, E.A. Mel’gunova, V.I. Zaikovskii, V.B. Fenelonov, A.F. Bedilo, K.J. Klabunde: Langmuir 19 (2003) 10426. DOI:10.1021/la020696510.1021/la0206965Search in Google Scholar

[26] A. Najafi: Ceram. Int. 43 (2017) 9220. DOI:10.1016/j.ceramint.2017.04.07610.1016/j.ceramint.2017.04.076Search in Google Scholar

[27] Z. Zhang, J. Li, J, Sun, H. Wang, W. Wei, Y. Sun: Ind. Eng. Chem. Res. 55 (2016) 7880. DOI:10.1021/acs.iecr.5b0394510.1021/acs.iecr.5b03945Search in Google Scholar

[28] W. Gao, T. Zhou, Q. Wang: Chem Eng J 336 (2018) 710. DOI:10.1016/j.cej.2017.12.02510.1016/j.cej.2017.12.025Search in Google Scholar

[29] J. Sharma, M. Sharma, S. Basu: J Environ Chem Eng 5 (2017) 3429. DOI:10.1016/j.jece.2017.07.01510.1016/j.jece.2017.07.015Search in Google Scholar

[30] M.A. Dar, S.G. Ansari, Y.S. Kim, G.S. Kim, H.K. Seo, J. Shin, S.K. Kulkarni, H.S. Shin: Thin Solid Films 497 (2006) 103. DOI:10.1016/j.tsf.2005.10.04710.1016/j.tsf.2005.10.047Search in Google Scholar

[31] T.R. Esch, T. Bredow: Appl. Surf. Sci. 389 (2016) 1202 –7. DOI:10.1016/j.apsusc.2016.07.14110.1016/j.apsusc.2016.07.141Search in Google Scholar

[32] X. Zheng, K. Wang, Z. Huang, Y. Liu, J. Wen, H. Peng: J. Ind. Eng. Chem. 76 (2019) 288. DOI:10.1016/j.jiec.2019.03.05310.1016/j.jiec.2019.03.053Search in Google Scholar

[33] T. Zhu, Y. Li, S. Sang, Z. Xie: Ceram. Int. 42 (2016) 1883. DOI:10.1016/j.ceramint.2016.09.02910.1016/j.ceramint.2016.09.029Search in Google Scholar

Received: 2020-08-14
Accepted: 2021-07-08
Published Online: 2021-10-15

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany