Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 24, 2021

Microstructural evolution and properties of tungsten inert gas and fiber laser welded SUS445 ferritic stainless steel

Ching-Wen Lu , Huei-Sen Wang EMAIL logo , Chih-Chun Hsieh EMAIL logo and Jie-Jyun Wu


To determine the weldability of SUS445 ferritic stainless steel, two welding approaches, tungsten inert gas and fiber laser welding processes, were used and compared. After the welding processes, the microstructure, mechanical properties, and corrosion resistance of the welds were investigated. In the weld fusion zones of these two welding approaches, different morphologies of the grains were obtained. No obvious precipitation formed in these zones. In the heat affected zone of the tungsten inert gas welds, more volume fraction and larger grain sizes of the Laves phase and larger matrix grains were observed, which significantly affected its corrosion resistance and mechanical properties. However, in the heat affected zone of the fiber laser welds, only small amounts Laves phases and a relatively narrow matrix grain growth area were observed, which offers better corrosion resistance and mechanical properties.

Prof. Huei-Sen Wang, I-Shou Universtiy, Department of Materials Science and Engineering Main Campus: No. 1, Sec. 1, Syuecheng Rd. Dasu District Kaohsiung City 84001 Taiwan, R. O. C. Tel: +886 (0)7-6577711 ext. 3111
Dr. Chih-Chun Hsieh Air Force Institute of Technology Department of Aircraft Engineering Julun Campus: No. 1, Julun Rd. Gangshan District Kaohsiung City 82063 Taiwan, R. O. C. Tel: +886-9-27757566


[1] A.N. Hansson, M. Montgomery, M.A.J. Somers: Oxid. Met. 71 (2009) 201. DOI:10.1007/s11085-009-9138-110.1007/s11085-009-9138-1Search in Google Scholar

[2] J. Shen, L. Zhou, T. Li: Oxid. Met. 48 (1997) 347–356. DOI:10.1007/BF0167050710.1007/BF01670507Search in Google Scholar

[3] Z. Yang, G. Xia, P. Singh, J.W. Stevenson: Solid State Ionics 176 (2005) 1495. DOI:10.1016/j.ssi.2005.03.01910.1016/j.ssi.2005.03.019Search in Google Scholar

[4] J.R. Davis, ASM Specialty Handbook: Stainless Steels, American for Specialty Material International, U.S.A (1994).Search in Google Scholar

[5] T. Juuti, L. Rovatti, A. Mäkelä, L.P. Karjalainen, D. Porter: J. Alloys Compd. 616 (2014) 250. DOI:10.1016/j.jallcom.2014.06.20110.1016/j.jallcom.2014.06.201Search in Google Scholar

[6] K. Fukuda, S. Ishikawa, T. Kasamo: Mo-Saving Stainless Steel JFE 445M for Hot Water Tanks, JFE Technical (2008).Search in Google Scholar

[7] Y.H. Shi, S. Cui, T. Zhu, S. Gu, X. Shen: J. Mater. Process. Technol. 256 (2018) 254. 2018.02.019. DOI:10.1016/j.jmatprotec10.1016/j.jmatprotecSearch in Google Scholar

[8] C.C. Silva, J.P. Farias, H.C. Miranda, R.F. Guimarães, J.W.A. Menezes, M.A.M. Neto: Mater. Charact. 59 (2008) 528. DOI:10.1016/j.matchar.2007.03.01110.1016/j.matchar.2007.03.011Search in Google Scholar

[9] S.H. Yan, Y. Shi, J. Liu, C. Ni: Opt. Laser Technol. 113 (2019) 428. DOI:10.1016/j.optlastec.2019.01.02310.1016/j.optlastec.2019.01.023Search in Google Scholar

[10] JIS, Metallic materials-Tensile testing-Method of test at room temperature, Japanese Standards Association Z2241, JAPAN (2011).Search in Google Scholar

[11] ASTM, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, American Society for Testing Materials International G48–11, USA (2015).Search in Google Scholar

[12] J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, John Wiley & Sons Inc., New York, USA (2005).Search in Google Scholar

[13] F.R. Xiao, Y.B. Cao, G.Y. Qiao, X.B. Zhang, B. Liao: J. Iron Steel Res. 19 (2012) 52. DOI:10.1016/S1006-706X(13)60020-510.1016/S1006-706X(13)60020-5Search in Google Scholar

[14] H.M. Soltani, M. Tayebi: J. Alloys Compd. 767 (2018) 112. DOI:10.1016/j.jallcom.2018.06.30210.1016/j.jallcom.2018.06.302Search in Google Scholar

[15] S.V. Kuryntsev, A.E. Morushkin, A. Kh. Gilmutdinov: Opt. Laser Eng. 90 (2017) 101. DOI:10.1016/j.optlaseng.2016.10.00810.1016/j.optlaseng.2016.10.008Search in Google Scholar

[16] E.L. Brown, M.E. Burnett, P.T. Purtscher, G. Krauss: Metall. Trans. A. 14 (1983) 791. DOI:10.1007/BF0264428210.1007/BF02644282Search in Google Scholar

[17] H.H. Lu, Y. Luo, H.K. Guo, W.Q. Li, J.C. Li, W. Liang: Mater, Sci. Eng. A 735 (2018) 31–39. DOI:10.1007/s11837-019-03473-010.1007/s11837-019-03473-0Search in Google Scholar

[18] D. Kou: Welding Metallurgy, John Wiley &Sons: Inc., 2nd ed., New Jersey, U.S.A (2013).Search in Google Scholar

[19] K.E. Easterling: Introduction to the Physical Metallurgy of Welding, Oxford Butterworth-Heinemann ed. (1992).Search in Google Scholar

[20] G. Li, X. Lu, X. Zhu, J. Huang, L. Liu, Y. Wu: Opt. Laser Technol. 101 (2018) 479. DOI:10.1016/j.optlastec.2017.12.00210.1016/j.optlastec.2017.12.002Search in Google Scholar

Received: 2020-08-19
Accepted: 2021-05-31
Published Online: 2021-09-24
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 27.1.2023 from
Scroll Up Arrow