Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 19, 2021

Electrochemical study of nickel nucleation mechanisms on glassy carbon at different pH values in an industrial electrolyte

  • Yangtao Xu EMAIL logo , Zhenxu Zhu , Lubin Liu and Zhijian Liu

Abstract

The electrochemical behavior of nickel at different pH values in industrial electrolyte was investigated by means of cyclic voltammetry, chronoamperometry and scanning electron microscopy. The results show that the cathodic reaction of nickel ions on glassy carbon electrode surface in industrial electrolyte is a quasi-reversible nucleation and growth process controlled by diffusion. The process is carried out in a three-dimensional instantaneous nucleation and growth mode, and pH values only influence the growth process. The grain size decreased, the deposition rate increased and the density of deposition layer on electrode surface increased with the increase in pH. When the electrolyte pH is 4.8, the grains are uniformly distributed on the electrode surface in a spherical shape with the size of 80 nm, which is the optimum pH value for preparing fine-grained nano-nickel.


Professor Yangtao Xu, Ph. D School of Materials Science & Engineering Lanzhou University of Technology No. 287, Langongping Road Lanzhou 730050 P. R. China Tel.: +86 0931 2973939

References

[1] X.P Liao, H.J Xia: Journal of Chongqing Technology and Business University (Natural Science Edition). 26 (2009) 399 (in Chinese). DOI:10.3969/j.issn.1672-058X.2009.04.02110.3969/j.issn.1672-058X.2009.04.021Search in Google Scholar

[2] L.C Zhao, Y.F Zheng: Chin. J. Nonferrous Met. 14 (2004) 323 (in Chinese). DOI:10.3321/j.issn:1004-0609.2004.z1.05110.3321/j.issn:1004-0609.2004.z1.051Search in Google Scholar

[3] D.C Yu, D.S Tan, S.T Wang: Electroplating & Finishing. 26 (2007) 42 (in Chinese). DOI:10.3969/j.issn.1004-227X.2007.04.01310.3969/j.issn.1004-227X.2007.04.013Search in Google Scholar

[4] D. Grujicic, B. Pesic: Electrochim. Acta. 51 (2006) 2678. DOI:10.1016/j.electacta.2005.08.01710.1016/j.electacta.2005.08.017Search in Google Scholar

[5] A. Ciszewski, S. Posluszny, G. Milczarek, M. Baraniak: Surf. Coat. Technol. 183 (2004) 127. DOI:10.1016/j.surfcoat.2003.09.05410.1016/j.surfcoat.2003.09.054Search in Google Scholar

[6] D. Golodnitsky, N.V. Gudin, G.A. Volyanuk: J. Electrochem. Soc. 147 (2000) 4156. DOI:10.1149/1.139403410.1149/1.1394034Search in Google Scholar

[7] Y.T Xu, Y.J Dai, W. Zhang: Surf. Coat. Technol. 330 (2017) 170. DOI:10.1016/j.surfcoat.2017.09.07810.1016/j.surfcoat.2017.09.078Search in Google Scholar

[8] J.L Lv, T.X Liang, C. Wang: J. Solid State Chem. 240 (2016) 109. DOI:10.1016/j.jssc.2016.05.02510.1016/j.jssc.2016.05.025Search in Google Scholar

[9] T. Guillemot, N. Schneider, N. Loones, F.J. Ramos, J. Rousset: Thin Solid Films. 661 (2018) 143. DOI:10.1016/j.tsf.2018.07.02210.1016/j.tsf.2018.07.022Search in Google Scholar

[10] A.M. Rashidi, A. Amadeh: Surf. Coat. Technol. 204 (2009) 353. DOI:10.1016/j.surfcoat.2009.07.03610.1016/j.surfcoat.2009.07.036Search in Google Scholar

[11] C. Dehchar, I. Chikouche, A. Sahari, A. Zouaoui: Compos. Commun. 11 (2019) 52. DOI: 10.1016/j.coco.2018.12.001Search in Google Scholar

[12] N.G. Sousa, C.P. Sousa, O.S. Campos, P. de Lima-Neto,A.N. Correia: J. Mol. Liq. 288 (2019) 1. DOI:10.1016/j.molliq.2019.11109110.1016/j.molliq.2019.111091Search in Google Scholar

[13] K. Gong, Y.X. Hua, C.Y. Xu, Q.B. ZHANG, Y. Li, J.J. Ru, Y.F. Jie: Chin. J. Nonferrous. Met. 25 (2015) 2458. DOI:10.1016/S1003-6326(15)63862-610.1016/S1003-6326(15)63862-6Search in Google Scholar

[14] W. Zhang, Y.T. Xu, T.D. Xia: Electroplating & Finishing. 34 (2015) 1145 (in Chinese). DOI:10.19289/j.1004-227x.2015.20.00210.19289/j.1004-227x.2015.20.002Search in Google Scholar

[15] P. Altimari, P.G. Schiavi, A. Rubino, F. Pagnanelli: J. Electroanal. Chem. 851 (2019) 1. DOI:10.1016/j.jelechem.2019.11341310.1016/j.jelechem.2019.113413Search in Google Scholar

[16] G. Oskam, P.M. Vereecken, P.C. Searson: J. Electrochem. Soc. 146 (1999) 1436. DOI:10.1149/1.139178210.1149/1.1391782Search in Google Scholar

[17] A.B. Soto, E.M. Arce, M.P. Pardave, I. González: Electrochim. Acta. 41 (1996) 2647. DOI:10.1016/0013-4686(96)00088-610.1016/0013-4686(96)00088-6Search in Google Scholar

[18] B. Scharifker, G. Hills: Electrochim. Acta. 28 (1983) 879. DOI:10.1016/0013-4686(83)85163-910.1016/0013-4686(83)85163-9Search in Google Scholar

[19] X.W. Yang, M.Z. An, Y.W. Zhang, L. Zhang: Chinese J. Inorg. Chem. 28 (2012) 1145 (in Chinese). DOI: CNKI:SUN:WJHX.0.2012-06-012.CNKI:SUN:WJHX.0.2012-06-012Search in Google Scholar

[20] M. Gu: Electrochim. Acta. 52 (2007) 4443. DOI:10.1016/j.electacta.2006.12.02710.1016/j.electacta.2006.12.027Search in Google Scholar

[21] J.H. Li, D.Z. Kuang, Y.L. Feng: Journal of Materials Protection. 4 (2010) 7 (in Chinese). DOI:10.16577/j.cnki.42-1215/tb.2010.08.01910.16577/j.cnki.42-1215/tb.2010.08.019Search in Google Scholar

[22] H. Alimadadi, A.B. Fanta, T. Kasama, T. Somers: Surf. Coat. Technol. 299 (2016) 1. DOI:10.1016/j.surfcoat.2016.04.06810.1016/j.surfcoat.2016.04.068Search in Google Scholar

[23] S.Z. Werta, O.K. Echendu, F.B. Dejene: Physica B: Physics of Condensed Matter. 580 (2020) 411939. DOI:10.1016/j.physb.2019.41193910.1016/j.physb.2019.411939Search in Google Scholar

[24] Y.C. Wu, P.L Taberna, P. Simon: Electrochem. Commun. 93 (2018) 119. DOI:10.1016/j.elecom.2018.06.01410.1016/j.elecom.2018.06.014Search in Google Scholar

[25] Y.T. Xu, K. Huang, Z.X. Zhu, T.D. Xia: Surf. Coat. Technol. 370 (2019) 1. DOI:10.1016/j.surfcoat.2019.04.07210.1016/j.surfcoat.2019.04.072Search in Google Scholar

Received: 2020-08-21
Accepted: 2020-11-04
Published Online: 2021-02-19

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-8046/pdf
Scroll to top button