Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2021

Optimal removal of iron impurities from kaolin by combination of Aspergillus niger & Bacillus subtilis

  • Mahsa Fakharpour EMAIL logo and Jalal Hajihoseini

Abstract

This study was carried out to remove iron from kaolin using a biological method by two different species of Bacillus sp. and the combination of A. niger isolated from pistachio skin & Bacillus subtilis and comparing them with the control sample. The experiments were carried out for Bacillus sp. at 30 °C and 25 °C and for the combination of A. niger & Bacillus subtilis at 27 °C. The concentration of dissolved iron increased with increasing temperature in the samples treated with Bacillus sp. X-ray fluorescence spectroscopy results of the samples at 25 °C showed a reduction of 31.1% in Fe2O3 and Fe content and a reduction of 37% at 30 °C after 28 days. Therefore, iron removal by Bacillus subtilis at 30 °C achieves better performance than at 25 °C. X-ray fluorescence spectroscopy results of the samples treated with the combination of A. niger & Bacillus subtilis show a decrease of 49% in Fe2O3 and Fe content at 27 °C after 14 days. The results of colour measurement showed that kaolin powder treated with the combination of A. niger & Bacillus subtilis at 27 °C had the highest degree of whiteness compared to other samples.


Dr. Mahsa Fakharpour Maybod Branch, Islamic Azad University On the 3rd kilometer of Maybod-Yazd Road Maybod, Yazd province Iran Tel.: +983532370161-7

  1. Compliance with ethical standards

    Conflict of interest. The authors declare that there is no conflict of interests with regard to this study.

    Ethical approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

    The authors express their appreciation to the Karaj Materials and Energy Institute and Dr. Pazouki, who lent their support to this project.

References

[1] L.M.S. de Mesquita, T. Rodrigues, S.D.S. Gomes: Miner. Eng. 9 (1996) 965. DOI:10.1016/0892-6875(96)00087-810.1016/0892-6875(96)00087-8Search in Google Scholar

[2] H.H. Murray: Kaolin applications. Developments in Clay Science, Vol. 2, (2006) 85.10.1016/S1572-4352(06)02005-8Search in Google Scholar

[3] A. Zegeye, S. Yahaya, C.I. Fialips, M.L. White, N.D. Gray, D.A.C, Manning: Appl. Clay. Sci. 86 (2013) 47. DOI:10.1016/j.clay.2013.08.04110.1016/j.clay.2013.08.041Search in Google Scholar

[4] H.W. Ryu, K.S. Cho, Y.K. Chang, S.D. Kim, T. Mori: J. Ferment. Bioeng. 80 (1995) 46. DOI:10.1016/0922-338X(95)98175-K10.1016/0922-338X(95)98175-KSearch in Google Scholar

[5] J.E. Kostka, E. Haefele, R. Viehweger, J.W. Stucki: Environ. Sci. Technol. 33 (1999a) 3127. DOI:10.1021/es990021x10.1021/es990021xSearch in Google Scholar

[6] I.Štyriaková, I.Štyriak: Ceramics-Silikáty. 44 (2000) 135.Search in Google Scholar

[7] J. Šuba, Z. Danková, I. Štyriaková, B. Doušová, A. Bekényiová, D.Štyriaková: Appl. Clay. Sci. 162 (2018) 317. DOI:10.1016/j.clay.2018.06.03110.1016/j.clay.2018.06.031Search in Google Scholar

[8] R.F. Conley, M.K. Lloyds: Ind. Eng. Chem. Process Des. Dev. 9 (1970) 595. DOI:10.1021/i260036a01710.1021/i260036a017Search in Google Scholar

[9] S.N. Groudev: Acta Biotechnol. 7 (1987) 299. DOI:10.1002/abio.37007040410.1002/abio.370070404Search in Google Scholar

[10] E. Tiffo, J.B.B. Mbah, P.D.B. Belibi, J.N.Y. Djobo, A. Elimbi: Mater. Chem. Phys. 239 (2020) 122103. DOI:10.1016/j.matchemphys.2019.12210310.1016/j.matchemphys.2019.122103Search in Google Scholar

[11] M.R. Guo, Y.M. Lin, X.P. Xu, Z.L. Chen: Appl. Clay. Sci. 48 (2010) 379. DOI:10.1016/j.clay.2010.01.01010.1016/j.clay.2010.01.010Search in Google Scholar

[12] D.K. Saleh, H. Abdollahi, M. Noaparast, A.F. Nosratabad, O.H. Tuovinen: Hydrometallurgy. 186 (2019) 235. DOI:10.1016/j.hydromet.2019.03.01410.1016/j.hydromet.2019.03.014Search in Google Scholar

[13] C. Cameselle, M.T. Ricart, M.J. Nunez, J.M. Lema: Hydrometallurgy. 68 (2003) 97. DOI:10.1016/S0304-386X(02)00196-210.1016/S0304-386X(02)00196-2Search in Google Scholar

[14] M.R. Hosseini, M. Pazouki, M. Ranjbar: App. Clay. Sci. 37 (2007) 251. DOI:10.1016/j.clay.2007.01.01010.1016/j.clay.2007.01.010Search in Google Scholar

[15] I. Musiał, E. Cibis, W. Rymowicz: Appl. Clay. Sci. 52 (2011) 277. DOI:10.1016/j.clay.2011.03.00410.1016/j.clay.2011.03.004Search in Google Scholar

[16] J.W. Stucki, in: F. Bergaya, G. Lagaly (Eds.), Properties and behaviour of iron in clay minerals. Developments in Clay Science, Vol. 1, Elsevier, USA (2006) 423.10.1016/S1572-4352(05)01013-5Search in Google Scholar

[17] C.N. Mulligan, R. Galvez-Cloutier: Environ. Monit. Assess. 84 (2003) 45. DOI:10.1016/j.jhazmat.2004.02.04010.1016/j.jhazmat.2004.02.040Search in Google Scholar PubMed

[18] M.R. Hoffmann, R.G. Arnold, G. Stephanopoulos. Microbial Reduction of Iron Ore, US Patent: US 4880740 (1989).Search in Google Scholar

[19] S. Bonneville, T. Behrendset, P.V. Cappellen, C. Hyacinthe, W.F.M. Röling: Geochim. Cosmochim. Acta. 70 (2006) 5842. DOI:10.1016/j.gca.2006.04.02910.1016/j.gca.2006.04.029Search in Google Scholar

[20] M. Taillefert, J.S. Beckler, E. Carey, J.L. Burns, C.M. Fennessey, T.J. DiChristina: J. Inorg. Biochem. 101 (2007) 1760. DOI:10.1016/j.jinorgbio.2007.07.02010.1016/j.jinorgbio.2007.07.020Search in Google Scholar PubMed

[21] I.Štyriaková, I.Štyriak, P. Malachovský, Z. Večera, D. Koloušek: Hydrometallurgy. 89 (2007) 99. DOI:10.1016/j.hydromet.2007.06.00210.1016/j.hydromet.2007.06.002Search in Google Scholar

[22] I. Štyriaková, I. Štyriak, P. Malachovský: Ceram-silikaty. 51 (2007) 202.Search in Google Scholar

[23] A. Mockovčiaková,Š. Iveta,Š. Jiří, K. Ivana: Appl. Clay. Sci. 39 (2008) 202. DOI:10.1016/j.clay.2007.06.00210.1016/j.clay.2007.06.002Search in Google Scholar

[24] E.Y. Lee, K.S. Cho, H.W. Ryu, Y.K. Chang: J. Biosci. Bioeng. 87 (1999) 397. DOI:10.1016/S1389-1723(99)80054-110.1016/S1389-1723(99)80054-1Search in Google Scholar

[25] L. Toro, B. Paponetti, F. Veglio, A. Marabini: Part. Sci. Technol. 10 (1992) 201. DOI: .1080/02726359208906612. DOI:10.1080/0272635920890661210.1080/02726359208906612Search in Google Scholar

[26] Q.X. He, X.C. Huang, Z.L. Chen: Appl. Clay. Sci. 51 (2011) 478. DOI:10.1016/j.clay.2011.01.01210.1016/j.clay.2011.01.012Search in Google Scholar

[27] C.N. Mulligan, M. Kamali, B.F. Gibbs: J. Hazard. Mater. 110 (2004) 77. DOI:10.1023/A:102287472752610.1023/A:1022874727526Search in Google Scholar

[28] G.H. Jeffery, J. Basset, J. Mendham, R.C. Denny: Vogel’s Textbook of Quantitative Chemical Analysis, Longman Science and Technical, New York (1989).Search in Google Scholar

[29] J.R. Marrier, M. Boulet: J. Dairy. Sci. 41 (1958) 1683. DOI:10.3168/jds.S0022-0302(58)91152-410.3168/jds.S0022-0302(58)91152-4Search in Google Scholar

[30] N. Nelson: J. Biol. Chem. 153 (1944) 375.10.1016/S0021-9258(18)71980-7Search in Google Scholar

[31] M. Somogyi: J. Biol. Chem. 195 (1952) 19.10.1016/S0021-9258(19)50870-5Search in Google Scholar

[32] J. Hajihoseini, M. Fakharpour: J. Asian Ceram. Soc. 7 (2019) 82. DOI:10.1080/21870764.2019.157115210.1080/21870764.2019.1571152Search in Google Scholar

Received: 2020-08-22
Accepted: 2021-02-22
Published Online: 2021-06-22
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 4.12.2023 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-8048/html
Scroll to top button