Accessible Requires Authentication Published by De Gruyter May 8, 2021

Study on the synthesis and application of BaTiO3 nanospheres

Do Viet On, Le Dai Vuong, Truong Van Chuong, Dao Anh Quang and Vo Thanh Tung

Abstract

In the present study, BaTiO3 nanospheres with a uniform particle size of around 100 nm were prepared by a hydrothermal route using Ba(OH)2.8H2O and TiO2 nanoparticles. Experimental results revealed that the main influencing factors for the formation of BaTiO3 nanospheres were molar Ba/Ti ratio (RBa/Ti), hydrothermal temperature, and time. Highly-dispersed BaTiO3 nanospheres (100 nm) were obtained under the optimum hydrothermal conditions at temperature = 200°C, time = 12 h, and RBa/Ti = 1.5. Under these optimum conditions, BaTiO3 ceramics were synthesized from the as-prepared BaTiO3 nanospheres, and their structural, microstructural, and electrical properties were investigated. The BaTiO3 ceramics exhibited a high dielectric constant of 7300 at a Curie temperature of 125 °C, great density (ρ), 5.83 g cm–3; large dielectric constant at room temperature er = 3586 and tan d = 0.03, high remanant polarization Pr = 10.6 μC cm–2, low coercive field Ec = 4.5 kVcm–1.


Vo Thanh Tung Department of Physics College of Sciences Hue University 77 Nguyen Hue Str. Hue City Vietnam Tel.: (+84)935961369

References

[1] Q.N.D. Vinh, V.L. Dai, A.O. Vladimirovna, B.B. Igorevich: Nanomater. Energy. 8 (2019) 73. DOI:10.1680/jnaen.18.00012 Search in Google Scholar

[2] L.D. Vuong, in: Nanotechnology for Agriculture: Crop Production & Protection, D.G. Panpatte, Y.K. Jhala (Eds.), Springer Singapore, Singapore (2019) 85. DOI:10.1007/978-981-32-9374-8_5 Search in Google Scholar

[3] Y. Yan, H. Yang, Z. Yi, T. Xian, R. Li, X.-X. Wang: Desalin. Water Treat. 170 (2019) 349. DOI:10.5004/dwt.2019.24747 Search in Google Scholar

[4] L.D. Vuong, N.D.T. Luan, D.D.H. Ngoc, P.T. Anh, V.-V.Q. Bao: Int. J. Nanosci. 16 (2016) 1650018. DOI:10.1142/S0219581X16500186 Search in Google Scholar

[5] N.T. Duong, L.D. Vuong, N.M. Son, H.V. Tuyen, T.V. Chuong: Nanomater. Energy. 6 (2017) 82. DOI:10.1680/jnaen.17.00009 Search in Google Scholar

[6] P.N. Nikolarakis, I.A. Asimakopoulos, L. Zoumpoulakis: J. Nanomater. 2018 (2018) 1. DOI:10.1155/2018/7023437 Search in Google Scholar

[7] J. Cheng, Y. Chen, J.W. Wu, X.R. Ji, S.H. Wu: Sensors. 19 (2019). PMid:31174357; DOI:10.3390/s19194078 Search in Google Scholar

[8] M. Gromada, M. Biglar, T. Trzepieciński, F. Stachowicz: Bull. Mater. Sci. 40 (2017) 759. DOI:10.1007/s12034-017-1406-0 Search in Google Scholar

[9] W.-S. Jung, J. Park, Y. Park, D.-H. Yoon: Ceram. Int. 36 (2010) 1997. DOI:10.1016/j.ceramint.2010.03.033 Search in Google Scholar

[10] M.d.A. Gomes, L.G. Magalhães, A.R. Paschoal, Z.S. Macedo, Á.S. Lima, K.I.B. Eguiluz, G.R.J.J.o.N. Salazar-Banda: J. Nanomater. 2018 (2018). Search in Google Scholar

[11] A. Sobha, R. Sumangala: Res. Rev.: J. Mater. Sci. 6 (2018) 175. DOI:10.4172/2321-6212.1000231 Search in Google Scholar

[12] H.-W. Lee, S. Moon, C.-H. Choi, D.K. Kim, S.J. Kang: J. Am. Ceram. Soc. 95 (2012) 2429. DOI:10.1111/j.1551-2916.2012.05085.x Search in Google Scholar

[13] S. Moon, H.-W. Lee, C.-H. Choi, D.K. Kim, E. Suvaci: J. Am. Ceram. Soc. 95 (2012) 2248. DOI:10.1111/j.1551-2916.2012.05163.x Search in Google Scholar

[14] J.-M. Han, M.-R. Joung, J.-S. Kim, Y.-S. Lee, S. Nahm, Y.-K. Choi, J.-H. Paik, E. Suvaci: J. Am. Ceram. Soc. 97 (2014) 346. DOI:10.1111/jace.12755 Search in Google Scholar

[15] J. Gao, H. Shi, H. Dong, R. Zhang, D. Chen: J. Nanopart. Res. 17 (2015) 286. DOI:10.1007/s11051-015-3090-6 Search in Google Scholar

[16] N. Liu, W. Zhao, J. Rong: J. Am. Ceram. Soc. 101 (2017) 1407. DOI:10.1111/jace.15339 Search in Google Scholar

[17] B.W. Lee, S.-B. Cho: J. Electroceram. 13 (2004) 379. DOI:10.1007/s10832-004-5129-4 Search in Google Scholar

[18] N. Norfarina, O.J. Lee, J.L. Chyi, S. Chen, Z. Talib: Solid State Phenom. 268 (2017) 172. DOI: 10.4028/www.scientific.net/SSP.268.172 Search in Google Scholar

[19] K. Hongo, S. Kurata, A. Jomphoak, M. Inada, K. Hayashi, R. Maezono: Inorg. Chem. 57 (2018) 5413. PMid:29658713; DOI:10.1021/acs.inorgchem.8b00381 Search in Google Scholar

[20] S.K. Lee, T.J. Park, G.J. Choi, K.K. Koo, S.W. Kim: Mater. Chem. Phys. 82 (2003) 742. DOI:10.1016/j.matchemphys.2003.07.003 Search in Google Scholar

[21] M. Li, L. Gu, T. Li, S. Hao, F. Tan, D. Chen, D. Zhu, Y. Xu, C. Sun, Z. Yang: Crystals. 10 (2020) 202. DOI:10.3390/cryst10030202 Search in Google Scholar

[22] B.W. Lee, H.K. Kim, S.B. Cho: Ferroelectrics. 333 (2011) 233. DOI:10.1080/00150190600701319 Search in Google Scholar

[23] Y.S. Her, E. Matijevi, M.C. Chon: J. Mater. Res. 10 (1995) 3106. DOI:10.1557/JMR.1995.3106 Search in Google Scholar

[24] M. Takahashi: Jpn. J. Appl. Phys. 9 (1970) 1236. DOI:10.1143/jjap.9.1236 Search in Google Scholar

[25] N. Sasirekha, B. Rajesh, Y.-W. Chen: Ind. Eng. Chem. Res. 47 (2008) 1868. DOI:10.1021/ie070986m Search in Google Scholar

[26] E. Magnone, J.R. Kim, J.H. Park: Ceram. Int. 42 (2016) 10030. DOI:10.1016/j.ceramint.2016.03.106i Search in Google Scholar

[27] W. Li, C. Ni, H. Lin, C.P. Huang, S.I. Shah: J. Appl. Phys. 96 (2004) 6663. DOI:10.1063/1.1807520 Search in Google Scholar

[28] S. He, H. Sun, D.g. Tan, T. Peng: Procedia Environ. Sci. 31 (2016) 977. DOI:10.1016/j.proenv.2016.03.003 Search in Google Scholar

[29] S. Mahshid, M. Askari, M.S. Ghamsari: J. Mater. Process. Technol. 189 (2007) 296. DOI:10.1016/j.jmatprotec.2007.01.040 Search in Google Scholar

[30] C. Baek, J.E. Wang, S. Moon, C.-H. Choi, D.K. Kim, R. Riman: J. Am. Ceram. Soc. 99 (2016) 3802. DOI:10.1111/jace.14397 Search in Google Scholar

[31] J. Gao, H. Shi, J. Yang, T. Li, R. Zhang, D. Chen: Nanoscale Res. Lett. 10 (2015) 1033. DOI:10.1186/s11671-015-1033-x Search in Google Scholar

[32] B. Yust, N. Razavi, F. Pedraza, Z. Elliott, A. Tsin, D. Sardar: Opt. Express. 20 (2012) 26511. DOI:10.1364/OE.20.026511 Search in Google Scholar

[33] R. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda: J. Opt. Soc. Am. B: Opt. Phys. 25 (2008). DOI:10.1364/JOSAB.25.000325 Search in Google Scholar

[34] H.C. Zeng: Curr. Nanosci. 3 (2007) 177. DOI:10.2174/157341307780619279 Search in Google Scholar

[35] Z.-Y. Shen, J. Li: J. Ceram. Soc. Jpn. 118 (2010) 940. DOI:10.2109/jcersj2.118.940 Search in Google Scholar

[36] S. Hu, C. Luo, P. Li, J. Hu, G. Li, H. Jiang, W. Zhang: J. Mater. Sci.: Mater. Electron. 28 (2017) 9322. DOI:10.1007/s10854-017-6670-7 Search in Google Scholar

[37] X. Zhao, W. Liu, W. Chen, S. Li: Ceram. Int. 41 (2015) S111. DOI:10.1016/j.ceramint.2015.03.260 Search in Google Scholar

[38] N. Funsueb, A. Limpichaipanit, A. Ngamjarurojana: J. Phys. Conf. Ser. 1144 (2018). DOI:10.1088/1742-6596/1144/1/012133 Search in Google Scholar

Received: 2020-08-24
Accepted: 2021-02-26
Published Online: 2021-05-08
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany