Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 8, 2021

Study on the synthesis and application of BaTiO3 nanospheres

  • Do Viet On , Le Dai Vuong , Truong Van Chuong , Dao Anh Quang and Vo Thanh Tung EMAIL logo

Abstract

In the present study, BaTiO3 nanospheres with a uniform particle size of around 100 nm were prepared by a hydrothermal route using Ba(OH)2.8H2O and TiO2 nanoparticles. Experimental results revealed that the main influencing factors for the formation of BaTiO3 nanospheres were molar Ba/Ti ratio (RBa/Ti), hydrothermal temperature, and time. Highly-dispersed BaTiO3 nanospheres (100 nm) were obtained under the optimum hydrothermal conditions at temperature = 200°C, time = 12 h, and RBa/Ti = 1.5. Under these optimum conditions, BaTiO3 ceramics were synthesized from the as-prepared BaTiO3 nanospheres, and their structural, microstructural, and electrical properties were investigated. The BaTiO3 ceramics exhibited a high dielectric constant of 7300 at a Curie temperature of 125 °C, great density (ρ), 5.83 g cm–3; large dielectric constant at room temperature er = 3586 and tan d = 0.03, high remanant polarization Pr = 10.6 μC cm–2, low coercive field E c = 4.5 kVcm–1.


Vo Thanh Tung Department of Physics College of Sciences Hue University 77 Nguyen Hue Str. Hue City Vietnam Tel.: (+84)935961369

References

[1] Q.N.D. Vinh, V.L. Dai, A.O. Vladimirovna, B.B. Igorevich: Nanomater. Energy. 8 (2019) 73. DOI:10.1680/jnaen.18.0001210.1680/jnaen.18.00012Search in Google Scholar

[2] L.D. Vuong, in: Nanotechnology for Agriculture: Crop Production & Protection, D.G. Panpatte, Y.K. Jhala (Eds.), Springer Singapore, Singapore (2019) 85. DOI:10.1007/978-981-32-9374-8_510.1007/978-981-32-9374-8_5Search in Google Scholar

[3] Y. Yan, H. Yang, Z. Yi, T. Xian, R. Li, X.-X. Wang: Desalin. Water Treat. 170 (2019) 349. DOI:10.5004/dwt.2019.2474710.5004/dwt.2019.24747Search in Google Scholar

[4] L.D. Vuong, N.D.T. Luan, D.D.H. Ngoc, P.T. Anh, V.-V.Q. Bao: Int. J. Nanosci. 16 (2016) 1650018. DOI:10.1142/S0219581X1650018610.1142/S0219581X16500186Search in Google Scholar

[5] N.T. Duong, L.D. Vuong, N.M. Son, H.V. Tuyen, T.V. Chuong: Nanomater. Energy. 6 (2017) 82. DOI:10.1680/jnaen.17.0000910.1680/jnaen.17.00009Search in Google Scholar

[6] P.N. Nikolarakis, I.A. Asimakopoulos, L. Zoumpoulakis: J. Nanomater. 2018 (2018) 1. DOI:10.1155/2018/702343710.1155/2018/7023437Search in Google Scholar

[7] J. Cheng, Y. Chen, J.W. Wu, X.R. Ji, S.H. Wu: Sensors. 19 (2019). PMid:31174357; DOI:10.3390/s1919407810.3390/s19194078Search in Google Scholar PubMed PubMed Central

[8] M. Gromada, M. Biglar, T. Trzepieciński, F. Stachowicz: Bull. Mater. Sci. 40 (2017) 759. DOI:10.1007/s12034-017-1406-010.1007/s12034-017-1406-0Search in Google Scholar

[9] W.-S. Jung, J. Park, Y. Park, D.-H. Yoon: Ceram. Int. 36 (2010) 1997. DOI:10.1016/j.ceramint.2010.03.03310.1016/j.ceramint.2010.03.033Search in Google Scholar

[10] M.d.A. Gomes, L.G. Magalhães, A.R. Paschoal, Z.S. Macedo, Á.S. Lima, K.I.B. Eguiluz, G.R.J.J.o.N. Salazar-Banda: J. Nanomater. 2018 (2018).10.1155/2018/5167182Search in Google Scholar

[11] A. Sobha, R. Sumangala: Res. Rev.: J. Mater. Sci. 6 (2018) 175. DOI:10.4172/2321-6212.100023110.4172/2321-6212.1000231Search in Google Scholar

[12] H.-W. Lee, S. Moon, C.-H. Choi, D.K. Kim, S.J. Kang: J. Am. Ceram. Soc. 95 (2012) 2429. DOI:10.1111/j.1551-2916.2012.05085.x10.1111/j.1551-2916.2012.05085.xSearch in Google Scholar

[13] S. Moon, H.-W. Lee, C.-H. Choi, D.K. Kim, E. Suvaci: J. Am. Ceram. Soc. 95 (2012) 2248. DOI:10.1111/j.1551-2916.2012.05163.x10.1111/j.1551-2916.2012.05163.xSearch in Google Scholar

[14] J.-M. Han, M.-R. Joung, J.-S. Kim, Y.-S. Lee, S. Nahm, Y.-K. Choi, J.-H. Paik, E. Suvaci: J. Am. Ceram. Soc. 97 (2014) 346. DOI:10.1111/jace.1275510.1111/jace.12755Search in Google Scholar

[15] J. Gao, H. Shi, H. Dong, R. Zhang, D. Chen: J. Nanopart. Res. 17 (2015) 286. DOI:10.1007/s11051-015-3090-610.1007/s11051-015-3090-6Search in Google Scholar

[16] N. Liu, W. Zhao, J. Rong: J. Am. Ceram. Soc. 101 (2017) 1407. DOI:10.1111/jace.1533910.1111/jace.15339Search in Google Scholar

[17] B.W. Lee, S.-B. Cho: J. Electroceram. 13 (2004) 379. DOI:10.1007/s10832-004-5129-410.1007/s10832-004-5129-4Search in Google Scholar

[18] N. Norfarina, O.J. Lee, J.L. Chyi, S. Chen, Z. Talib: Solid State Phenom. 268 (2017) 172. DOI: 10.4028/www.scientific.net/SSP.268.172Search in Google Scholar

[19] K. Hongo, S. Kurata, A. Jomphoak, M. Inada, K. Hayashi, R. Maezono: Inorg. Chem. 57 (2018) 5413. PMid:29658713; DOI:10.1021/acs.inorgchem.8b0038110.1021/acs.inorgchem.8b00381Search in Google Scholar PubMed

[20] S.K. Lee, T.J. Park, G.J. Choi, K.K. Koo, S.W. Kim: Mater. Chem. Phys. 82 (2003) 742. DOI:10.1016/j.matchemphys.2003.07.00310.1016/j.matchemphys.2003.07.003Search in Google Scholar

[21] M. Li, L. Gu, T. Li, S. Hao, F. Tan, D. Chen, D. Zhu, Y. Xu, C. Sun, Z. Yang: Crystals. 10 (2020) 202. DOI:10.3390/cryst1003020210.3390/cryst10030202Search in Google Scholar

[22] B.W. Lee, H.K. Kim, S.B. Cho: Ferroelectrics. 333 (2011) 233. DOI:10.1080/0015019060070131910.1080/00150190600701319Search in Google Scholar

[23] Y.S. Her, E. Matijevi, M.C. Chon: J. Mater. Res. 10 (1995) 3106. DOI:10.1557/JMR.1995.310610.1557/JMR.1995.3106Search in Google Scholar

[24] M. Takahashi: Jpn. J. Appl. Phys. 9 (1970) 1236. DOI:10.1143/jjap.9.123610.1143/jjap.9.1236Search in Google Scholar

[25] N. Sasirekha, B. Rajesh, Y.-W. Chen: Ind. Eng. Chem. Res. 47 (2008) 1868. DOI:10.1021/ie070986m10.1021/ie070986mSearch in Google Scholar

[26] E. Magnone, J.R. Kim, J.H. Park: Ceram. Int. 42 (2016) 10030. DOI:10.1016/j.ceramint.2016.03.106i10.1016/j.ceramint.2016.03.106iSearch in Google Scholar

[27] W. Li, C. Ni, H. Lin, C.P. Huang, S.I. Shah: J. Appl. Phys. 96 (2004) 6663. DOI:10.1063/1.180752010.1063/1.1807520Search in Google Scholar

[28] S. He, H. Sun, D.g. Tan, T. Peng: Procedia Environ. Sci. 31 (2016) 977. DOI:10.1016/j.proenv.2016.03.00310.1016/j.proenv.2016.03.003Search in Google Scholar

[29] S. Mahshid, M. Askari, M.S. Ghamsari: J. Mater. Process. Technol. 189 (2007) 296. DOI:10.1016/j.jmatprotec.2007.01.04010.1016/j.jmatprotec.2007.01.040Search in Google Scholar

[30] C. Baek, J.E. Wang, S. Moon, C.-H. Choi, D.K. Kim, R. Riman: J. Am. Ceram. Soc. 99 (2016) 3802. DOI:10.1111/jace.1439710.1111/jace.14397Search in Google Scholar

[31] J. Gao, H. Shi, J. Yang, T. Li, R. Zhang, D. Chen: Nanoscale Res. Lett. 10 (2015) 1033. DOI:10.1186/s11671-015-1033-x10.1186/s11671-015-1033-xSearch in Google Scholar PubMed PubMed Central

[32] B. Yust, N. Razavi, F. Pedraza, Z. Elliott, A. Tsin, D. Sardar: Opt. Express. 20 (2012) 26511. DOI:10.1364/OE.20.02651110.1364/OE.20.026511Search in Google Scholar PubMed PubMed Central

[33] R. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda: J. Opt. Soc. Am. B: Opt. Phys. 25 (2008). DOI:10.1364/JOSAB.25.00032510.1364/JOSAB.25.000325Search in Google Scholar

[34] H.C. Zeng: Curr. Nanosci. 3 (2007) 177. DOI:10.2174/15734130778061927910.2174/157341307780619279Search in Google Scholar

[35] Z.-Y. Shen, J. Li: J. Ceram. Soc. Jpn. 118 (2010) 940. DOI:10.2109/jcersj2.118.94010.2109/jcersj2.118.940Search in Google Scholar

[36] S. Hu, C. Luo, P. Li, J. Hu, G. Li, H. Jiang, W. Zhang: J. Mater. Sci.: Mater. Electron. 28 (2017) 9322. DOI:10.1007/s10854-017-6670-710.1007/s10854-017-6670-7Search in Google Scholar

[37] X. Zhao, W. Liu, W. Chen, S. Li: Ceram. Int. 41 (2015) S111. DOI:10.1016/j.ceramint.2015.03.26010.1016/j.ceramint.2015.03.260Search in Google Scholar

[38] N. Funsueb, A. Limpichaipanit, A. Ngamjarurojana: J. Phys. Conf. Ser. 1144 (2018). DOI:10.1088/1742-6596/1144/1/01213310.1088/1742-6596/1144/1/012133Search in Google Scholar

Received: 2020-08-24
Accepted: 2021-02-26
Published Online: 2021-05-08
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.12.2023 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-8054/html
Scroll to top button