Accessible Unlicensed Requires Authentication Published by De Gruyter June 22, 2021

Review on the mechanical properties and biocompatibility of titanium implant: The role of niobium alloying element

Ahmad Farrahnoor and Hussain Zuhailawati


Biomedical titanium alloys with elastic moduli close to that of cortical bone have gained great attention in the field of bone implantation. A low modulus is desirable in an implant to prevent stress shielding, which usually leads to critical clinical issues, such as bone resorption and implant loosening. The use of β-type titanium with nontoxic alloying elements, such as niobium, as a novel candidate of implant material for replacing failed hard tissues has shown great potential. This review describes a titanium implant application alloyed with niobium and the mechanical properties and bioactivity of various titanium alloys sintered at different temperatures.

Prof. Ir. Ts. Dr. Zuhailawati Hussain School of Materials and Mineral Resources Engineering Universiti Sains Malaysia 14300 Nibong Tebal Pulau Pinang Malaysia Tel. : +60 45995258 Fax : +60 45996907 Web :


[1] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li: Materials 7 (2014) 1709 –1800. PMid:28788539; DOI:10.3390/ma7031709 Search in Google Scholar

[2] B.P. Bannon, E.E. Mild: ASTM (1983) 7–15. DOI:10.1520/STP28931S Search in Google Scholar

[3] F.N. Ahmad and H. Zuhailawati, H.: Int. J. Electroactive Mater. 8 (2020) 63–67. Search in Google Scholar

[4] E. Almanza, M.J. Pérez, N.A. Rodríguez, L.E. Murr: J. Mater. Res. Technol. 6 (2017) 251 –257. DOI:10.1016/j.jmrt.2017.05.003 Search in Google Scholar

[5] N. Eliaz: Materials 12 (2019) 1–91. PMid:30696087; DOI:10.3390/ma12030407 Search in Google Scholar

[6] X. Liu, S. Chen, J.K.H. Tsoi, J.P. Matinlinna: Regen. Biomater. 4 (2017) 315–323. PMid:29026646; DOI:10.1093/rb/rbx027 Search in Google Scholar

[7] M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina: J. Funct. Biomater. 8 (2017) 1–15. PMid:28954399; DOI:10.3390/jfb8040044 Search in Google Scholar

[8] K.A. Nazari, A. Nouri, T. Hilditch: Mater. Des. 88 (2015) 1164–1174. DOI:10.1016/j.matdes.2015.09.106 Search in Google Scholar

[9] C. Salvo, C. Aguilar, R. Cardoso-Gil, A. Medina, L. Bejar, R.V. Mangalaraja: J. Alloys Compd. 720 (2017) 254–263. DOI:10.1016/j.jallcom.2017.05.262 Search in Google Scholar

[10] N.H.N.E.A. Shah, M. Yahaya, M. Sulaiman, M.H. Ismail: Jurnal Teknologi 76 (2015). DOI:10.11113/jt.v76.5713 Search in Google Scholar

[11] S. Leong, W. Yee, F. Edith, J. Alloys Compd. 660 (2016) 461–470. DOI:10.1016/j.jallcom.2015.11.141 Search in Google Scholar

[12] E. Frutos, M. Karlík, J.A. Jiménez, H. Langhansová, J. Lieskovská, T. Polcar: Mater. Des. 142 (2018) 44–55. DOI:10.1016/j.matdes.2018.01.014 Search in Google Scholar

[13] X. Rao, C.L. Chu, Y.Y. Zheng: J. Mech. Behav. Biomed. Mater. 34 (2014) 27–36. PMid:24556322; DOI:10.1016/j.jmbbm.2014.02.001 Search in Google Scholar

[14] F.N. Ahmad, Z. Hussain: J. Phys.: Conf. Ser. 1082 (2018) 012083. DOI:10.1088/1742-6596/1082/1/012083 Search in Google Scholar

[15] D.S.M. Vishnu, J. Sure, Y. Liu, R.V. Kumar, C. Schwandt: Mater. Sci. Eng. C 96 (2019) 466 –478. PMid:30606556; DOI:10.1016/j.msec.2018.11.025 Search in Google Scholar

[16] J. Fojt, L. Joska, J. Malek, V. Sefl: Mater. Sci. Eng. C 56 (1025) 532–537. PMid:26249624; DOI:10.1016/j.msec.2015.07.029 Search in Google Scholar

[17] F.N. Ahmad: PhD thesis, Mechanical properties and bioactivity of Ti-Nb-HA composite fabricated by mechanical alloying, Universiti Sains Malaysia, Malaysia (2020). Search in Google Scholar

[18] K. Zhang: PhD thesis, The microstructure and properties of hipped powder Ti alloy, University of Birmingham, UK (2009). Search in Google Scholar

[19] M. Bönisch: PhD thesis, Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys, Technische Univ. Dresden, Germany (2016). Search in Google Scholar

[20] Y.L. Zhou, M. Niinomi: J. Alloys Compd. 466 (2008) 535 –542. DOI:10.1016/j.jallcom.2007.11.090 Search in Google Scholar

[21] L.B. Zhang, K.Z. Wang, L.J. Xu, S.L. Xiao, Y.Y. Chen: Trans. Nonferrous Met. Soc. China 25 (2015) 2214 –2220. DOI:10.1016/S1003-6326(15)63834-1 Search in Google Scholar

[22] M.S. Oh, J.Y. Lee, J.K. Park: Metall. Mater. Trans. A 35 (2004) 3071 –3077. DOI:10.1007/s11661-004-0052-5 Search in Google Scholar

[23] S.K. Kim, J.K. Park: Metall. Mater. Trans. A 33 (2002) 1051–1056. DOI:10.1007/s11661-002-0206-2 Search in Google Scholar

[24] K. Zhuravleva: PhD thesis, Porous ß-type Ti-Nb alloy for biomedical applications, der Technischen Universität Dresden, Germany (2014). Search in Google Scholar

[25] A. Shinbine: Master thesis, In-situ evaluation of the hcp to bcc phase transformation kinetics in commercially pure titanium and Ti-5Al-5Mo-5 V-3Cr alloy using laser ultrasonics, University of British Columbia, Canada (2016). Search in Google Scholar

[26] S. Guo, Q. Meng, X. Zhao, Q. Wei, H. Xu: Sci. Rep. 5 (2015) 14688. DOI:10.1038/srep14688 Search in Google Scholar

[27] H. Li, T. Lei, J. Zhao, Q. Shang, Z. Lin, \Production of Ti-13Nb-13Zr alloy by powder metallurgy (P/M) via sintering hydrides. Mater. Manuf. Process 31 (2016) 719–724. DOI:10.1080/10426914.2014.994775 Search in Google Scholar

[28] D. Roberto, D. Santos, V.André, R. Henriques, C. Alberto, A. Cairo, M. Dos, S. Pereira: Mat. Res. 8 (2005) 439 –442. DOI:10.1590/S1516-14392005000400014 Search in Google Scholar

[29] G.V. Martins, C.R.M. Silva, C.A. Nunes, V.A.R. Henriques, L.A. Borges Junior, J.P.B Machado: Materials Science Forum 660–661 (2010) 170–175. DOI:10.4028/ Search in Google Scholar

[30] G.T. Aleixo, C.R.M. Afonso, A.A. Coelho, R. Caram: Solid State Phenom. 138 (2018) 393 –398. DOI:10.4028/ Search in Google Scholar

[31] F.J. Gil, M.P. Ginebra, J.M. Manero, J.A. Planell: J. Alloys Compd. 329 (2001) 142 –152. DOI:10.1016/S0925-8388(01)01571-7 Search in Google Scholar

[32] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme: Biomaterials 25 (2004) 5705–5713. PMid:15147816; DOI:10.1016/j.biomaterials.2004.01.021 Search in Google Scholar

[33] D. Raabe, B. Sander, M. Friák, D.Ma., J. Neugebauer: Acta Mater. 55(2007) 4475–4487. DOI:10.1016/j.actamat.2007.04.024 Search in Google Scholar

[34] P.F. Gostin, A. Helth, A. Voss, R. Sueptitz, M. Calin, J. Exkert, A. Gebert: J. Biomed. Mater. Res. B Appl. Biomater. 101 (2013) 269–278. PMid:23166048; DOI:10.1002/jbm.b.32836 Search in Google Scholar

[35] Y. Bai, Y. Deng, Y. Zheng, Y. Li, R. Zhang, Y. Lv, Q. Zhao, S. Wei: Mater. Sci. Eng. C 59 (2016) 565–576. PMid:26652409; DOI:10.1016/j.msec.2015.10.062 Search in Google Scholar

[36] W. Zhao, Y. Liu, H. Jiang, Q. Peng: J. Alloys Compd. 462 (2008) 103–108. DOI:10.1016/j.jallcom.2007.08.047 Search in Google Scholar

[37] M.K. Han, J.Y. Kim, M.J. Hwang, H.J. Song, Y.J. Park: Materials 8 (2015) 5986 –6003. DOI:10.3390/ma8095287 Search in Google Scholar

[38] M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe, J. Neugebauer: Materials 5 (2012) 1853–1872. DOI:10.3390/ma5101853 Search in Google Scholar

[39] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Acta Mater. 59 (2011) 6208 –6218. DOI:10.1016/j.actamat.2011.06.015 Search in Google Scholar

[40] M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, M. Ogawa: Mater. Trans. 50 (2009) 2716–2720. DOI:10.2320/matertrans.MA200904 Search in Google Scholar

[41] L.M. da Silva, A.P.R.A Claro, T.A.G. Donato, V.E. Arana-Chavez, J.C.S. Moraes, M.A.R. Buzalaf, C.R. Grandini: Artif. Organs 35 (2011) 516–521. DOI:10.1111/j.1525-1594.2011.01263.x Search in Google Scholar

[42] H. Matsumoto, S. Watanabe, N. Masahashi, S. Hanada: ,\ Metall. Mater. Trans. A 37 (2006) 3239–3249. DOI:10.1007/BF02586159 Search in Google Scholar

[43] K. Chou, E.A. Marquis: Acta Mater. 181 (2019) 367–376. DOI:10.1016/j.actamat.2019.09.049 Search in Google Scholar

[44] F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, C.R. Grandini: Materials 7 (2014) 542–553. PMid:28788473; DOI:10.3390/ma7010542 Search in Google Scholar

[45] L. Slokar, T. Matković, P. Matković: Mater. Des. 33 (2012) 26–30. DOI:10.1016/J.MATDES. 2011.06.052 Search in Google Scholar

[46] J.M. Chaves, O. Florêncioa, P.S. Silva Jr., P.W.B. Marquesa, C.R.M. Afonso: J. Mech. Behv. Biomed. Mater. 46 (2015) 184–196. PMid:25796065; DOI:10.1016/j.jmbbm.2015.02.030 Search in Google Scholar

[47] J.J.G. Moreno, M. Bönisch, N.T. Panagiotopoulos, M. Calin, D.G. Papageorgiou, A. Gebert, J. Eckert, G.A. Evangelakis, C.E. Lekka: J. Alloys Compd. 696 (2017) 481 –489. DOI:10.1016/j.jallcom.2016.11.231 Search in Google Scholar

[48] Y.F. Xu, D.Q. Yi, H.Q. Liu, B. Wang, F.L. Yang: Mater. Sci. Eng. A 529 (2011) 326 –334. DOI:10.1016/J.MSEA.2011.09.035 Search in Google Scholar

[49] C.M. Lee, C.P. Ju, J.H. Chern Lin: J. Oral Rehabil. 29 (2002) 314–322. DOI:10.1046/j.1365-2842.2002.00825.x Search in Google Scholar

[50] E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, R. Caram Lopes: Materials Characterization 62 (2011) 673 –680. DOI:10.1016/j.matchar.2011.04.015 Search in Google Scholar

[51] K. Niespodziana, K. Jurczyk, J. Jakubowicz, M. Jurczyk, M.: Mater. Chem. Phys. 123 (2010) 160–165. DOI:10.1016/j.matchemphys.2010.03.076 Search in Google Scholar

[52] K. Ozaltin, W. Chrominski, M. Kulczyk, A. Panigrahi, J. Horky, M. Zehetbauer, M. Lewandowska: J. Mater. Sci. 49 (2014) 6930 –6936. DOI:10.1007/s10853-014-8397-7 Search in Google Scholar

[53] Z. Chen: Nanoindentation of macro-porous materials for elastic modulus and hardness determination, Applied Nanoindentation in Advanced Materials (2017) 135–156. DOI:10.1002/9781119084501.ch6 Search in Google Scholar

[54] R. Oriňaková, A. Oriňak, M. Kupková, M. Hrubovčáková, L. Škantárová, A.M. Turoňová, L.M. Bučková, C. Muhmann, H.F. Arlinghaus: Int. J. Electrochem. Sci. 10 (2015) 659–670. Search in Google Scholar

[55] M. Lai, Y. Gao, B. Yuan, M. Zhu: Mater. Des. 60 (2014) 193–197. DOI:10.1016/j.matdes.2014.03.067 Search in Google Scholar

[56] L.M. Zou, C. Yang, Y. Long, Z.Y. Xiao, Y.Y. Li: Powder Metallurgy 55 (2012) 65–70. DOI:10.1179/1743290111Y.0000000021 Search in Google Scholar

[57] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Mater. Sci. Eng. A 438 (2006) 839 –843. DOI:10.1016/j.msea.2006.02.136 Search in Google Scholar

[58] H.Y. Kim, J. Fu, H. Tobe, J.I. Kim, S. Miyazaki: Shape Memory and Superelasticity 1 (2015) 107–116. DOI:10.1007/s40830-015-0022-3 Search in Google Scholar

[59] A.P. Mouritz: Introduction to aerospace materials, Woodhead Publishing Limited, United Kingdom (2012) 202–223. DOI:10.1533/9780857095152 Search in Google Scholar

[60] C. Schulze, M. Weinmann, C. Schweigel, O. Keßler, R. Bader: Materials (Basel) 11 (2018) 1–20. PMid:29342864; DOI:10.3390/ma11010124 Search in Google Scholar

[61] D. Kalita, L. Rogal, T. Czeppe, A. Wo’jcik, A. Kolano-Burian, P. Zackiewicz, B. Kania, J. Dutkiewicz: J. Mater. Eng. Perform. 29 (2019) 1445–1452. DOI:10.1007/s11665-019-04417-0 Search in Google Scholar

[62] S. Hanada, H. Matsumoto, S.Watanabe: International Congress Series 1284 (2005) 239–247. DOI:10.1016/j.ics.2005.06.084 Search in Google Scholar

[63] M. Yahaya, S. Sahidin@Salehudin, M. Sulaiman, N.H.N.E. Azham Shah, M.H. Ismail: Materials Science Forum 863 (2016) 14–18. DOI: 10.4028/www.scientific.863.14 Search in Google Scholar

[64] A. Thoemmes, I.A. Bataev, N.S. Belousova, D.V. Lazurenko: 11th International Forum on Strategic Technology (IFOST) (2016) 26–29. DOI:10.1109/IFOST.2016.7884101 Search in Google Scholar

[65] M. Kikuchi, M. Takahashi, O. Okuno: Dent. Mater. J. 22 (2003) 328–342. PMid:14620999; DOI:10.4012/dmj.22.328 Search in Google Scholar

[66] R.P. Kolli, A. Devaraj: Metals 8 (2018) 1–41. DOI:10.3390/met8070506 Search in Google Scholar

[67] M. Lai, Y. Gao, B. Yuan, M. Zhu: Mat. Des. 87 (2015) 466–472. DOI:10.1016/j.matdes.2015.07.180 Search in Google Scholar

[68] E. Yılmaz, A. Gökçe, F. Findik, H. Gulsoy: J. Alloys Compd. 746 (2018) 301–313. DOI:10.1016/j.jallcom.2018.02.274 Search in Google Scholar

[69] Q. Wang, C. Han, T. Choma, Q. Wei, C. Yan, B. Song, Y. Shi: Mater. Des. 126 (2017) 268–277. DOI:10.1016/j.matdes.2017.04.026 Search in Google Scholar

[70] Y.-H. Hon, J.-Y. Wang, Y.-N. Pan: Mater. Trans. 44 (2003) 2384 –2390. DOI: 0.2320/matertrans.44.2384. DOI:10.2320/matertrans.44.2384 Search in Google Scholar

[71] D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, F. Pyczak: J. Mech. Behav. Biomed. Mater. 28 (2013) 171 –182. PMid:23994942; DOI:10.1016/j.jmbbm.2013.08.013 Search in Google Scholar

[72] D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, F. Pyczak: J. Alloys Compd. 640 (2015) 393–400. DOI:10.1016/j.jallcom.2015.04.039 Search in Google Scholar

[73] B. Sharma, S.K. Vajpai, K. Ameyama: J. Alloys. Compd. 656 (2015) 978–986. DOI:10.1016/j.jallcom.2015.10.053 Search in Google Scholar

[74] M.W.D. Mendes, C.G. Ágreda, A.H.A. Bressiani, J.C. Bressiani: Mater. Sci. Eng. C 63 (2016) 671–677. PMid:27040264; DOI:10.1016/j.msec.2016.03.052 Search in Google Scholar

[75] V.A.R. Henriques, C.A.A. Cairo, C.R.M. Silva, J.C.C. Bressiani: Materials Science Forum 498–499 (2005) 40–48. DOI:10.4028/ Search in Google Scholar

[76] L. Shapira, A. Klinger, A. Tadir, A. Wilensky, A. Halabi: Clin. Oral Implants Res. 20 (2009) 578 –582. DOI:10.1111/j.1600-0501.2009.01707.x Search in Google Scholar

[77] K. Rajamallu, B.K. Kodli, A. Rajendran, J. Nivedhitha, D.K. Pattanayak, K. Ameyama, S.R. Dey: Mater. Sci. Eng. C 94 (2018) 619–627. PMid:30423747; DOI:10.1016/j.msec.2018.10.006 Search in Google Scholar

Received: 2020-08-26
Accepted: 2021-03-01
Published Online: 2021-06-22
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany