Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2021

Review on the mechanical properties and biocompatibility of titanium implant: The role of niobium alloying element

  • Ahmad Farrahnoor and Hussain Zuhailawati EMAIL logo

Abstract

Biomedical titanium alloys with elastic moduli close to that of cortical bone have gained great attention in the field of bone implantation. A low modulus is desirable in an implant to prevent stress shielding, which usually leads to critical clinical issues, such as bone resorption and implant loosening. The use of β-type titanium with nontoxic alloying elements, such as niobium, as a novel candidate of implant material for replacing failed hard tissues has shown great potential. This review describes a titanium implant application alloyed with niobium and the mechanical properties and bioactivity of various titanium alloys sintered at different temperatures.


Prof. Ir. Ts. Dr. Zuhailawati Hussain School of Materials and Mineral Resources Engineering Universiti Sains Malaysia 14300 Nibong Tebal Pulau Pinang Malaysia Tel. : +60 45995258 Fax : +60 45996907 Web : www.eng.usm.my

References

[1] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li: Materials 7 (2014) 1709 –1800. PMid:28788539; DOI:10.3390/ma703170910.3390/ma7031709Search in Google Scholar PubMed PubMed Central

[2] B.P. Bannon, E.E. Mild: ASTM (1983) 7–15. DOI:10.1520/STP28931S10.1520/STP28931SSearch in Google Scholar

[3] F.N. Ahmad and H. Zuhailawati, H.: Int. J. Electroactive Mater. 8 (2020) 63–67.Search in Google Scholar

[4] E. Almanza, M.J. Pérez, N.A. Rodríguez, L.E. Murr: J. Mater. Res. Technol. 6 (2017) 251 –257. DOI:10.1016/j.jmrt.2017.05.00310.1016/j.jmrt.2017.05.003Search in Google Scholar

[5] N. Eliaz: Materials 12 (2019) 1–91. PMid:30696087; DOI:10.3390/ma1203040710.3390/ma12030407Search in Google Scholar PubMed PubMed Central

[6] X. Liu, S. Chen, J.K.H. Tsoi, J.P. Matinlinna: Regen. Biomater. 4 (2017) 315–323. PMid:29026646; DOI:10.1093/rb/rbx02710.1093/rb/rbx027Search in Google Scholar PubMed PubMed Central

[7] M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina: J. Funct. Biomater. 8 (2017) 1–15. PMid:28954399; DOI:10.3390/jfb804004410.3390/jfb8040044Search in Google Scholar PubMed PubMed Central

[8] K.A. Nazari, A. Nouri, T. Hilditch: Mater. Des. 88 (2015) 1164–1174. DOI:10.1016/j.matdes.2015.09.10610.1016/j.matdes.2015.09.106Search in Google Scholar

[9] C. Salvo, C. Aguilar, R. Cardoso-Gil, A. Medina, L. Bejar, R.V. Mangalaraja: J. Alloys Compd. 720 (2017) 254–263. DOI:10.1016/j.jallcom.2017.05.26210.1016/j.jallcom.2017.05.262Search in Google Scholar

[10] N.H.N.E.A. Shah, M. Yahaya, M. Sulaiman, M.H. Ismail: Jurnal Teknologi 76 (2015). DOI:10.11113/jt.v76.571310.11113/jt.v76.5713Search in Google Scholar

[11] S. Leong, W. Yee, F. Edith, J. Alloys Compd. 660 (2016) 461–470. DOI:10.1016/j.jallcom.2015.11.14110.1016/j.jallcom.2015.11.141Search in Google Scholar

[12] E. Frutos, M. Karlík, J.A. Jiménez, H. Langhansová, J. Lieskovská, T. Polcar: Mater. Des. 142 (2018) 44–55. DOI:10.1016/j.matdes.2018.01.01410.1016/j.matdes.2018.01.014Search in Google Scholar

[13] X. Rao, C.L. Chu, Y.Y. Zheng: J. Mech. Behav. Biomed. Mater. 34 (2014) 27–36. PMid:24556322; DOI:10.1016/j.jmbbm.2014.02.00110.1016/j.jmbbm.2014.02.001Search in Google Scholar

[14] F.N. Ahmad, Z. Hussain: J. Phys.: Conf. Ser. 1082 (2018) 012083. DOI:10.1088/1742-6596/1082/1/01208310.1088/1742-6596/1082/1/012083Search in Google Scholar

[15] D.S.M. Vishnu, J. Sure, Y. Liu, R.V. Kumar, C. Schwandt: Mater. Sci. Eng. C 96 (2019) 466 –478. PMid:30606556; DOI:10.1016/j.msec.2018.11.02510.1016/j.msec.2018.11.025Search in Google Scholar

[16] J. Fojt, L. Joska, J. Malek, V. Sefl: Mater. Sci. Eng. C 56 (1025) 532–537. PMid:26249624; DOI:10.1016/j.msec.2015.07.02910.1016/j.msec.2015.07.029Search in Google Scholar

[17] F.N. Ahmad: PhD thesis, Mechanical properties and bioactivity of Ti-Nb-HA composite fabricated by mechanical alloying, Universiti Sains Malaysia, Malaysia (2020).Search in Google Scholar

[18] K. Zhang: PhD thesis, The microstructure and properties of hipped powder Ti alloy, University of Birmingham, UK (2009).Search in Google Scholar

[19] M. Bönisch: PhD thesis, Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys, Technische Univ. Dresden, Germany (2016).Search in Google Scholar

[20] Y.L. Zhou, M. Niinomi: J. Alloys Compd. 466 (2008) 535 –542. DOI:10.1016/j.jallcom.2007.11.09010.1016/j.jallcom.2007.11.090Search in Google Scholar

[21] L.B. Zhang, K.Z. Wang, L.J. Xu, S.L. Xiao, Y.Y. Chen: Trans. Nonferrous Met. Soc. China 25 (2015) 2214 –2220. DOI:10.1016/S1003-6326(15)63834-110.1016/S1003-6326(15)63834-1Search in Google Scholar

[22] M.S. Oh, J.Y. Lee, J.K. Park: Metall. Mater. Trans. A 35 (2004) 3071 –3077. DOI:10.1007/s11661-004-0052-510.1007/s11661-004-0052-5Search in Google Scholar

[23] S.K. Kim, J.K. Park: Metall. Mater. Trans. A 33 (2002) 1051–1056. DOI:10.1007/s11661-002-0206-210.1007/s11661-002-0206-2Search in Google Scholar

[24] K. Zhuravleva: PhD thesis, Porous ß-type Ti-Nb alloy for biomedical applications, der Technischen Universität Dresden, Germany (2014).Search in Google Scholar

[25] A. Shinbine: Master thesis, In-situ evaluation of the hcp to bcc phase transformation kinetics in commercially pure titanium and Ti-5Al-5Mo-5 V-3Cr alloy using laser ultrasonics, University of British Columbia, Canada (2016).Search in Google Scholar

[26] S. Guo, Q. Meng, X. Zhao, Q. Wei, H. Xu: Sci. Rep. 5 (2015) 14688. DOI:10.1038/srep1468810.1038/srep14688Search in Google Scholar PubMed PubMed Central

[27] H. Li, T. Lei, J. Zhao, Q. Shang, Z. Lin, \Production of Ti-13Nb-13Zr alloy by powder metallurgy (P/M) via sintering hydrides. Mater. Manuf. Process 31 (2016) 719–724. DOI:10.1080/10426914.2014.99477510.1080/10426914.2014.994775Search in Google Scholar

[28] D. Roberto, D. Santos, V.André, R. Henriques, C. Alberto, A. Cairo, M. Dos, S. Pereira: Mat. Res. 8 (2005) 439 –442. DOI:10.1590/S1516-1439200500040001410.1590/S1516-14392005000400014Search in Google Scholar

[29] G.V. Martins, C.R.M. Silva, C.A. Nunes, V.A.R. Henriques, L.A. Borges Junior, J.P.B Machado: Materials Science Forum 660–661 (2010) 170–175. DOI:10.4028/www.scientific.net/MSF.660-661.15210.4028/www.scientific.net/MSF.660-661.152Search in Google Scholar

[30] G.T. Aleixo, C.R.M. Afonso, A.A. Coelho, R. Caram: Solid State Phenom. 138 (2018) 393 –398. DOI:10.4028/www.scientific.net/SSP.138.39310.4028/www.scientific.net/SSP.138.393Search in Google Scholar

[31] F.J. Gil, M.P. Ginebra, J.M. Manero, J.A. Planell: J. Alloys Compd. 329 (2001) 142 –152. DOI:10.1016/S0925-8388(01)01571-710.1016/S0925-8388(01)01571-7Search in Google Scholar

[32] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme: Biomaterials 25 (2004) 5705–5713. PMid:15147816; DOI:10.1016/j.biomaterials.2004.01.02110.1016/j.biomaterials.2004.01.021Search in Google Scholar PubMed

[33] D. Raabe, B. Sander, M. Friák, D.Ma., J. Neugebauer: Acta Mater. 55(2007) 4475–4487. DOI:10.1016/j.actamat.2007.04.02410.1016/j.actamat.2007.04.024Search in Google Scholar

[34] P.F. Gostin, A. Helth, A. Voss, R. Sueptitz, M. Calin, J. Exkert, A. Gebert: J. Biomed. Mater. Res. B Appl. Biomater. 101 (2013) 269–278. PMid:23166048; DOI:10.1002/jbm.b.3283610.1002/jbm.b.32836Search in Google Scholar PubMed

[35] Y. Bai, Y. Deng, Y. Zheng, Y. Li, R. Zhang, Y. Lv, Q. Zhao, S. Wei: Mater. Sci. Eng. C 59 (2016) 565–576. PMid:26652409; DOI:10.1016/j.msec.2015.10.06210.1016/j.msec.2015.10.062Search in Google Scholar PubMed

[36] W. Zhao, Y. Liu, H. Jiang, Q. Peng: J. Alloys Compd. 462 (2008) 103–108. DOI:10.1016/j.jallcom.2007.08.04710.1016/j.jallcom.2007.08.047Search in Google Scholar

[37] M.K. Han, J.Y. Kim, M.J. Hwang, H.J. Song, Y.J. Park: Materials 8 (2015) 5986 –6003. DOI:10.3390/ma809528710.3390/ma8095287Search in Google Scholar PubMed PubMed Central

[38] M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe, J. Neugebauer: Materials 5 (2012) 1853–1872. DOI:10.3390/ma510185310.3390/ma5101853Search in Google Scholar

[39] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Acta Mater. 59 (2011) 6208 –6218. DOI:10.1016/j.actamat.2011.06.01510.1016/j.actamat.2011.06.015Search in Google Scholar

[40] M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, M. Ogawa: Mater. Trans. 50 (2009) 2716–2720. DOI:10.2320/matertrans.MA20090410.2320/matertrans.MA200904Search in Google Scholar

[41] L.M. da Silva, A.P.R.A Claro, T.A.G. Donato, V.E. Arana-Chavez, J.C.S. Moraes, M.A.R. Buzalaf, C.R. Grandini: Artif. Organs 35 (2011) 516–521. DOI:10.1111/j.1525-1594.2011.01263.x10.1111/j.1525-1594.2011.01263.xSearch in Google Scholar PubMed

[42] H. Matsumoto, S. Watanabe, N. Masahashi, S. Hanada: ,\ Metall. Mater. Trans. A 37 (2006) 3239–3249. DOI:10.1007/BF0258615910.1007/BF02586159Search in Google Scholar

[43] K. Chou, E.A. Marquis: Acta Mater. 181 (2019) 367–376. DOI:10.1016/j.actamat.2019.09.04910.1016/j.actamat.2019.09.049Search in Google Scholar

[44] F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, C.R. Grandini: Materials 7 (2014) 542–553. PMid:28788473; DOI:10.3390/ma701054210.3390/ma7010542Search in Google Scholar PubMed PubMed Central

[45] L. Slokar, T. Matković, P. Matković: Mater. Des. 33 (2012) 26–30. DOI:10.1016/J.MATDES. 2011.06.05210.1016/J.MATDES.2011.06.052Search in Google Scholar

[46] J.M. Chaves, O. Florêncioa, P.S. Silva Jr., P.W.B. Marquesa, C.R.M. Afonso: J. Mech. Behv. Biomed. Mater. 46 (2015) 184–196. PMid:25796065; DOI:10.1016/j.jmbbm.2015.02.03010.1016/j.jmbbm.2015.02.030Search in Google Scholar PubMed

[47] J.J.G. Moreno, M. Bönisch, N.T. Panagiotopoulos, M. Calin, D.G. Papageorgiou, A. Gebert, J. Eckert, G.A. Evangelakis, C.E. Lekka: J. Alloys Compd. 696 (2017) 481 –489. DOI:10.1016/j.jallcom.2016.11.23110.1016/j.jallcom.2016.11.231Search in Google Scholar

[48] Y.F. Xu, D.Q. Yi, H.Q. Liu, B. Wang, F.L. Yang: Mater. Sci. Eng. A 529 (2011) 326 –334. DOI:10.1016/J.MSEA.2011.09.03510.1016/J.MSEA.2011.09.035Search in Google Scholar

[49] C.M. Lee, C.P. Ju, J.H. Chern Lin: J. Oral Rehabil. 29 (2002) 314–322. DOI:10.1046/j.1365-2842.2002.00825.x10.1046/j.1365-2842.2002.00825.xSearch in Google Scholar PubMed

[50] E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, R. Caram Lopes: Materials Characterization 62 (2011) 673 –680. DOI:10.1016/j.matchar.2011.04.01510.1016/j.matchar.2011.04.015Search in Google Scholar

[51] K. Niespodziana, K. Jurczyk, J. Jakubowicz, M. Jurczyk, M.: Mater. Chem. Phys. 123 (2010) 160–165. DOI:10.1016/j.matchemphys.2010.03.07610.1016/j.matchemphys.2010.03.076Search in Google Scholar

[52] K. Ozaltin, W. Chrominski, M. Kulczyk, A. Panigrahi, J. Horky, M. Zehetbauer, M. Lewandowska: J. Mater. Sci. 49 (2014) 6930 –6936. DOI:10.1007/s10853-014-8397-710.1007/s10853-014-8397-7Search in Google Scholar

[53] Z. Chen: Nanoindentation of macro-porous materials for elastic modulus and hardness determination, Applied Nanoindentation in Advanced Materials (2017) 135–156. DOI:10.1002/9781119084501.ch610.1002/9781119084501.ch6Search in Google Scholar

[54] R. Oriňaková, A. Oriňak, M. Kupková, M. Hrubovčáková, L. Škantárová, A.M. Turoňová, L.M. Bučková, C. Muhmann, H.F. Arlinghaus: Int. J. Electrochem. Sci. 10 (2015) 659–670.Search in Google Scholar

[55] M. Lai, Y. Gao, B. Yuan, M. Zhu: Mater. Des. 60 (2014) 193–197. DOI:10.1016/j.matdes.2014.03.06710.1016/j.matdes.2014.03.067Search in Google Scholar

[56] L.M. Zou, C. Yang, Y. Long, Z.Y. Xiao, Y.Y. Li: Powder Metallurgy 55 (2012) 65–70. DOI:10.1179/1743290111Y.000000002110.1179/1743290111Y.0000000021Search in Google Scholar

[57] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Mater. Sci. Eng. A 438 (2006) 839 –843. DOI:10.1016/j.msea.2006.02.13610.1016/j.msea.2006.02.136Search in Google Scholar

[58] H.Y. Kim, J. Fu, H. Tobe, J.I. Kim, S. Miyazaki: Shape Memory and Superelasticity 1 (2015) 107–116. DOI:10.1007/s40830-015-0022-310.1007/s40830-015-0022-3Search in Google Scholar

[59] A.P. Mouritz: Introduction to aerospace materials, Woodhead Publishing Limited, United Kingdom (2012) 202–223. DOI:10.1533/978085709515210.1533/9780857095152Search in Google Scholar

[60] C. Schulze, M. Weinmann, C. Schweigel, O. Keßler, R. Bader: Materials (Basel) 11 (2018) 1–20. PMid:29342864; DOI:10.3390/ma1101012410.3390/ma11010124Search in Google Scholar PubMed PubMed Central

[61] D. Kalita, L. Rogal, T. Czeppe, A. Wo’jcik, A. Kolano-Burian, P. Zackiewicz, B. Kania, J. Dutkiewicz: J. Mater. Eng. Perform. 29 (2019) 1445–1452. DOI:10.1007/s11665-019-04417-010.1007/s11665-019-04417-0Search in Google Scholar

[62] S. Hanada, H. Matsumoto, S.Watanabe: International Congress Series 1284 (2005) 239–247. DOI:10.1016/j.ics.2005.06.08410.1016/j.ics.2005.06.084Search in Google Scholar

[63] M. Yahaya, S. Sahidin@Salehudin, M. Sulaiman, N.H.N.E. Azham Shah, M.H. Ismail: Materials Science Forum 863 (2016) 14–18. DOI: 10.4028/www.scientific.863.1410.4028/www.scientific.863.14Search in Google Scholar

[64] A. Thoemmes, I.A. Bataev, N.S. Belousova, D.V. Lazurenko: 11th International Forum on Strategic Technology (IFOST) (2016) 26–29. DOI:10.1109/IFOST.2016.788410110.1109/IFOST.2016.7884101Search in Google Scholar

[65] M. Kikuchi, M. Takahashi, O. Okuno: Dent. Mater. J. 22 (2003) 328–342. PMid:14620999; DOI:10.4012/dmj.22.32810.4012/dmj.22.328Search in Google Scholar PubMed

[66] R.P. Kolli, A. Devaraj: Metals 8 (2018) 1–41. DOI:10.3390/met807050610.3390/met8070506Search in Google Scholar

[67] M. Lai, Y. Gao, B. Yuan, M. Zhu: Mat. Des. 87 (2015) 466–472. DOI:10.1016/j.matdes.2015.07.18010.1016/j.matdes.2015.07.180Search in Google Scholar

[68] E. Yılmaz, A. Gökçe, F. Findik, H. Gulsoy: J. Alloys Compd. 746 (2018) 301–313. DOI:10.1016/j.jallcom.2018.02.27410.1016/j.jallcom.2018.02.274Search in Google Scholar

[69] Q. Wang, C. Han, T. Choma, Q. Wei, C. Yan, B. Song, Y. Shi: Mater. Des. 126 (2017) 268–277. DOI:10.1016/j.matdes.2017.04.02610.1016/j.matdes.2017.04.026Search in Google Scholar

[70] Y.-H. Hon, J.-Y. Wang, Y.-N. Pan: Mater. Trans. 44 (2003) 2384 –2390. DOI: 0.2320/matertrans.44.2384. DOI:10.2320/matertrans.44.238410.2320/matertrans.44.2384Search in Google Scholar

[71] D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, F. Pyczak: J. Mech. Behav. Biomed. Mater. 28 (2013) 171 –182. PMid:23994942; DOI:10.1016/j.jmbbm.2013.08.01310.1016/j.jmbbm.2013.08.013Search in Google Scholar PubMed

[72] D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, F. Pyczak: J. Alloys Compd. 640 (2015) 393–400. DOI:10.1016/j.jallcom.2015.04.03910.1016/j.jallcom.2015.04.039Search in Google Scholar

[73] B. Sharma, S.K. Vajpai, K. Ameyama: J. Alloys. Compd. 656 (2015) 978–986. DOI:10.1016/j.jallcom.2015.10.05310.1016/j.jallcom.2015.10.053Search in Google Scholar

[74] M.W.D. Mendes, C.G. Ágreda, A.H.A. Bressiani, J.C. Bressiani: Mater. Sci. Eng. C 63 (2016) 671–677. PMid:27040264; DOI:10.1016/j.msec.2016.03.05210.1016/j.msec.2016.03.052Search in Google Scholar PubMed

[75] V.A.R. Henriques, C.A.A. Cairo, C.R.M. Silva, J.C.C. Bressiani: Materials Science Forum 498–499 (2005) 40–48. DOI:10.4028/www.scientific.net/MSF.498-499.4010.4028/www.scientific.net/MSF.498-499.40Search in Google Scholar

[76] L. Shapira, A. Klinger, A. Tadir, A. Wilensky, A. Halabi: Clin. Oral Implants Res. 20 (2009) 578 –582. DOI:10.1111/j.1600-0501.2009.01707.x10.1111/j.1600-0501.2009.01707.xSearch in Google Scholar

[77] K. Rajamallu, B.K. Kodli, A. Rajendran, J. Nivedhitha, D.K. Pattanayak, K. Ameyama, S.R. Dey: Mater. Sci. Eng. C 94 (2018) 619–627. PMid:30423747; DOI:10.1016/j.msec.2018.10.00610.1016/j.msec.2018.10.006Search in Google Scholar PubMed

Received: 2020-08-26
Accepted: 2021-03-01
Published Online: 2021-06-22
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 28.9.2023 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-8060/html
Scroll to top button