Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 12, 2021

Fabrication of monoclinic BiVO4 photocatalyst film and its photocatalytic activity for organic pollutant removal

  • Saranyoo Chaiwichian EMAIL logo and Buagun Samran

Abstract

Monoclinic BiVO4 photocatalyst films decorated on glass substrates were successfully fabricated via a dip-coating technique with different annealing temperatures of 400 °C, 450 °C, 500°C, and 550 °C. All of the physical and chemical properties of as-prepared BiVO4 photocatalyst film samples were investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra techniques. The results revealed that the as-prepared BiVO4 photocatalyst film samples retained a monoclinic phase with an average particle size of about 50 – 100 nm. Moreover, the BiVO4 photocatalyst film samples showed a strong photoabsorption edge in the range of visible light with the band gap energy of 2.46 eV. The photocatalytic activities of all the film samples were tested by the degradation of model acid orange 7 under visible light irradiation. The BiVO4 photocatalyst film sample annealed at a temperature of 500 °C showed the highest photoactivity efficiency compared with other film samples, reaching up to 51%within 180 min. In addition, the stability and reusability of BiVO4 photocatalyst film sample made with an annealing temperature of 500 °C did not show loss of photodegradation efficiency of acid orange 7 after ten recycles. A likely mechanism of the photocatalytic process was established by trapping experiments, indicating that the hydroxyl radical scavenger species can be considered to play a key role for acid orange 7 degradation under visible light irradiation.


Dr. Saranyoo Chaiwichian Department of Science and Mathematics Faculty of Industry and Technology Rajamangala University of Technology Isan Sakonnakhon Campus Phangkon Sakonnakhon 47160 Thailand Tel.: +66 979418005 Fax: +66 42772158

References

[1] J.H. Sun, H. Yang: Ceram. Int. 40 (2014) 6399 –6404. DOI:10.1016/j.ceramint2013.12.04910.1016/j.ceramint2013.12.049Search in Google Scholar

[2] L. Xu, Y.G. Wei, W. Guo, Y.H. Guo, Y.N. Guo: Appl. Surf. Sci. 332 (2015) 682–693. DOI:10.1016/j.apsusc.2015.01.23510.1016/j.apsusc.2015.01.235Search in Google Scholar

[3] S. Gu, W. Li, F. Wang, S. Wang, H. Zhou, H. Li: Appl. Catal. B Environ. 170–171 (2015) 186–194. DOI:10.1016/j.apcatb.2015.01.04410.1016/j.apcatb.2015.01.044Search in Google Scholar

[4] L. Li, B. Yan: J. Alloys Compd. 476 (2009) 624 –628. DOI:10.1016/j.jallcom.2008.09.08310.1016/j.jallcom.2008.09.083Search in Google Scholar

[5] M. Guo, Q. He, A. Wang, W. Wang, Z. Fu: Crystal. 6 (2016) 81. DOI:10.3390/cryst607008110.3390/cryst6070081Search in Google Scholar

[6] H.Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi: Mater. Res. Bull. 44 (2009) 700–706. DOI:10.1016/j.materresbull.2008.06.00710.1016/j.materresbull.2008.06.007Search in Google Scholar

[7] J. Xu, W.Z. Wang, J. Wang, Y.J. Liang: Appl. Surf. Sci. 349 (2015) 529–537. DOI:10.1016/j.apsusc.2015.04.19510.1016/j.apsusc.2015.04.195Search in Google Scholar

[8] H.M. Fan, T.F. Jiang, H.Y. Li, D.J. Wang, L.L. Wang, J.L. Zhai, D.Q. He, P. Wang, T.F. Xie: J. Phys. Chem. C. 116 (2012) 2425 –2430. DOI:10.1021/jp206798d10.1021/jp206798dSearch in Google Scholar

[9] Z. He, Y. Shi, C. Gao, L. Wen, J. Chen, S. Song: J. Phys. Chem. C. 118 (2014) 389–398. DOI:10.1021/jp409598s10.1021/jp409598sSearch in Google Scholar

[10] W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang: J. Hazard. Mater. 173 (2010) 194–199. DOI:10.1016/j.jhazmat.2009.08.06810.1016/j.jhazmat.2009.08.068Search in Google Scholar PubMed

[11] H.Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi: J. Eur. Ceram. Soc. 28 (2008) 2955 –2962. DOI:10.1016/j.jeurceramsoc.2008.05.00210.1016/j.jeurceramsoc.2008.05.002Search in Google Scholar

[12] J.Q. Yu, Y. Zhang, A. Kudo: J. Solid State Chem. 182 (2009) 223–228. DOI:10.1016/j.jssc.2008.10.02110.1016/j.jssc.2008.10.021Search in Google Scholar

[13] J. Xu, W. Wang, J. Wang, Y. Liang: Appl. Surf. Sci. 349 (2015) 529–537. DOI:10.1557/JMR.2005.007010.1557/JMR.2005.0070Search in Google Scholar

[14] G. Li, Y. Bai, W.F. Zhang: Mater. Chem. Phys. 136 (2012) 930 – 934. DOI:10.1016/j.matchemphys.2012.08.02310.1016/j.matchemphys.2012.08.023Search in Google Scholar

[15] L. Zhou, W.Z. Wang, S.W. Liu, L.S. Zhang, H.L. Xu, W. Zhu: J. Mol. Catal. A Chem. 252 (2006) 120–124. DOI:10.1016/j.molcata.2006.01.05210.1016/j.molcata.2006.01.052Search in Google Scholar

[16] L. Hu, S. Dong, Y. Li, Y. Pi, J. Wang, Y. Wang, J. Sun: J. Taiwan Inst. Chem. Eng. 45 (2014) 2462–2468. DOI:10.1016/j.jtice.2014.04.02210.1016/j.jtice.2014.04.022Search in Google Scholar

[17] X. Qi, X. Zhu, J. Wu, Q. Wu, X. Li, M. Gu: Mater. Res. Bull. 59 (2014) 435–441. DOI:10.1016/j.materresbull.2014.08.00410.1016/j.materresbull.2014.08.004Search in Google Scholar

[18] M. Wang, C. Niu, J. Liu, Q. Wang, C. Yang, H. Zheng: J. Alloys Compd. 648 (2015) 1109 –1115. DOI:10.1016/j.jallcom.2015.05.11510.1016/j.jallcom.2015.05.115Search in Google Scholar

[19] M.R. da Silva, L.H. Dall’Antonia, L.V.A. Scalvi, D.I. dos Santos, L.O. Ruggiero, A. Urbano: J. Solid State Electrochem. 16(10) (2012) 3267–3274. DOI:10.1007/s10008-012-1765-910.1007/s10008-012-1765-9Search in Google Scholar

[20] R. Venkatesan, S. Velumani, K. Ordon, M. Makowska-Janusik, G. Corbel, A. Kassiba: Mater. Chem. Phys. 205 (2018) 325 –333. DOI:10.1016/j.matchemphys.2017.11.00410.1016/j.matchemphys.2017.11.004Search in Google Scholar

[21] S. Hernández, G. Gerardi, K. Bejtka, A. Fina, N. Russo: Appl. Catal. B Environ. 190 (2016) 66–74. DOI:10.1016/j.apcatb.2016.02.05910.1016/j.apcatb.2016.02.059Search in Google Scholar

[22] M. Long, W. Cai: Chinese J. Catal. 29 (2008) 881–883. DOI:10.1016/S1872-2067(08)60069-810.1016/S1872-2067(08)60069-8Search in Google Scholar

[23] V.I. Merupo, S. Velumani, A. Abramova, K. Ordon, M. Makowska-Janusik, A. Kassiba: J. Mater. Sci. Mater. Electron. 29 (2018) 15770 –15775. DOI:10.1007/s10854-018-9241-710.1007/s10854-018-9241-7Search in Google Scholar

[24] E. Alarcón-Lladó, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey, J.W. Ager: Phys. Chem. Chem. Phys. 16 (2014) 1651 – 1657. DOI:10.1039/c3cp53904k10.1039/c3cp53904kSearch in Google Scholar PubMed

[25] S. Hilliard, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert: ChemPhotoChem. 1 (2017) 273–280. DOI:10.1002/cptc.20170000310.1002/cptc.201700003Search in Google Scholar

[26] S. Hernández, S. Mouli Thalluri, A. Sacco, S. Bensaid, G. Saracco, N. Russo: Appl. Catal. A Gen. 504 (2015) 266 –271. DOI:10.1016/j.apcata.2015.01.01910.1016/j.apcata.2015.01.019Search in Google Scholar

[27] B. Zhou, J. Qu, X. Zhao, H. Liu: J. Environ. Sci. 23(1) (2011) 151–159. DOI:10.1016/S1001-0742(10)60387-710.1016/S1001-0742(10)60387-7Search in Google Scholar PubMed

[28] P. Ju, P. Wang, B. Li, H. Fan, S. Ai, D. Zhang, Y. Wang: Chem. Eng. J. 236 (2014) 430–437. DOI:10.1016/j.cej.2013.10.00110.1016/j.cej.2013.10.001Search in Google Scholar

[29] W. Zhao, Y. Liu, Z. Wei, S. Yang, H. He, C. Sun: Appl. Catal. B Environ. 185 (2016) 242–252. DOI:10.1016/j.apcatb.2015.12.02310.1016/j.apcatb.2015.12.023Search in Google Scholar

[30] S. Xie, T. Zhai, Y. Zhu, W. Li, R. Qiu, Y. Tong, X. Lu: Int. J. Hydrog. Energy. 39 (2014) 4820 –4827. DOI:10.1016/j.ijhydene.2014.01.07210.1016/j.ijhydene.2014.01.072Search in Google Scholar

[31] H. Yuan, J. Liu, J. Li, Y. Li, X. Wang, Y. Zhang, J. Jiang, S. Chen, C. Zhao, D. Qian: J. Colloid Interf. Sci. 444 (2015) 58–66. DOI:10.1016/j.jcis.2014.12.03410.1016/j.jcis.2014.12.034Search in Google Scholar PubMed

[32] Z. Zhao, H. Dai, J. Deng, Y. Liu, C.T. Au: Chinese J. Catal. 34 (2013) 1617–1626. DOI:10.1016/S1872-2067(12)60632-910.1016/S1872-2067(12)60632-9Search in Google Scholar

[33] L. Ge: Mater. Chem. Phys. 107 (2008) 465–470. DOI:10.1016/j.matchemphys.2007.08.01610.1016/j.matchemphys.2007.08.016Search in Google Scholar

[34] H. Xu, H. Li, C. Wu, J. Chu, Y. Yan, H. Shu: Mater. Sci. Eng. B. 147 (2008) 52–56. DOI:10.1016/j.mseb.2007.11.01110.1016/j.mseb.2007.11.011Search in Google Scholar

[35] B. Pare, B. Sarwan, S. Jonnalagadda: Appl. Surf. Sci. 258 (2011) 247–253. DOI:10.1016/j.apsusc.2011.08.04010.1016/j.apsusc.2011.08.040Search in Google Scholar

[36] N. Serpone, D. Lawless, R. Khairutdinov: J. Phys. Chem. B. 99 (1995) 16646–16654. DOI:10.1021/j100045a02610.1021/j100045a026Search in Google Scholar

[37] S. Wu, H. Zheng, Y. Lian, Y. Wu: Mater. Res. Bull. 48 (2013) 2901 –2907. DOI:10.1016/j.materresbull.2013.04.04110.1016/j.materresbull.2013.04.041Search in Google Scholar

[38] J. Sun, X. Li, Q. Zhao, J. Ke, D. Zhang: J. Phys. Chem. C. 118 (2014) 10113–10121. DOI:10.1021/jp501307610.1021/jp5013076Search in Google Scholar

[39] H. Che, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C. Li, H. Dong: Catal. Sci. Technol. 8 (2018) 622–631. DOI:10.1039/C7CY01709J10.1039/C7CY01709JSearch in Google Scholar

[40] R. Hao, G. Wang, H. Tang: Appl. Catal. B Environ. 187 (2016) 47–58. DOI:10.1016/j.apcatb.2016.01.02610.1016/j.apcatb.2016.01.026Search in Google Scholar

[41] X.J. Su, X.X. Zou, G.D. Li, X. Wei, C. Yan, Y.N. Wang, J. Zhao, L.J. Zhou, J.S. Chen: J. Phys. Chem. C. 115 (2011) 8064 –8071. DOI:10.1021/jp200274k10.1021/jp200274kSearch in Google Scholar

[42] H. Zhang, D. Yu, W. Wang, P. Gao, L. Zhang, S. Zhong, B. Liu: Adv. Powder Technol. 30 (2019) 3182–3192. DOI:10.1016/j.apt.2019.09.02710.1016/j.apt.2019.09.027Search in Google Scholar

[43] J. Li, Y. Chen, C. Chen, S. Wang: Bull. Chem. React. Eng. Catal. 14(2) (2019) 336–344. DOI:10.9767/bcrec.14.2.3182.336-34410.9767/bcrec.14.2.3182.336-344Search in Google Scholar

Received: 2020-08-31
Accepted: 2021-02-17
Published Online: 2021-05-12
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-8065/html
Scroll to top button