Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2021

Microwave absorption properties of Zn-doped barium ferrite (BaFe12-xZnxO19) decorated reduced graphene oxide

  • Mojtaba Moslehi Niasar , Mohammad Jafar Molaei EMAIL logo and Alireza Aghaei


Reduced graphene oxide has attracted great interest for application as microwave absorbing materials during recent years. Barium ferrite (BaFe12O19) is also a hard magnetic material with microwave absorbing properties. In this research, Zn-doped barium ferrite/reduced graphene oxide nanocomposites were synthesized and their magnetic and microwave absorption properties were studied. Phase analysis, particle morphology, magnetic properties, and microwave absorption properties were investigated by means of X-ray diffraction, field-emission scanning electron microscopy, vibrating sample magnetometry, and vector network analysis, respectively. Electron microscopy images showed that reduced graphene oxide nanosheets are decorated with barium ferrite nanoparticles. Zn-doping in the reduced graphene oxide/BaFe12-xZnxO19 (x = 0.0, 0.2, 0.4, and 0.6) nanocomposites caused an increase in the saturation magnetization from 30.76 to 32.69 emu g–1 for Zn = 0.4. Maximum reflection loss was increased from –7.39 dB to –13.50 dB by Zn doping for x = 0.4 in the nanocomposite consisting of 10 wt.% of reduced graphene oxide/BaZn0.4Fe11.6O19. The microwave absorption characteristics are discussed based on the permittivity and permeability values of the nanocomposites.

Dr. Mohammad Jafar Molaei Shahrood University of Technology Post code: 3619995161 Shahrood Iran Tel.: +98 2332392204


[1] Y. Li, M. Yu, P. Yang, J. Fu: Ind. Eng. Chem. Res. 56 (2017) 8872. DOI:10.1021/acs.iecr.7b0173210.1021/acs.iecr.7b01732Search in Google Scholar

[2] Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che: Adv. Mater.. 28 (2016) 486. DOI:10.1002/adma.20150314910.1002/adma.201503149Search in Google Scholar PubMed

[3] Z. Su, L. Tan, J. Tao, C. Zhang, R. Yang, F. Wen: Phys. Status Solidi B 255 (2018). 1700553. DOI:10.1002/pssb.20170055310.1002/pssb.201700553Search in Google Scholar

[4] S. Zeng, Y. Yao, W. Feng, H. Zhang, S. Peng: J. Mater. Chem. C 8 (2020) 1326. DOI:10.1039/C9TC05615G10.1039/C9TC05615GSearch in Google Scholar

[5] M. Molaei, M. Rahimipour: Mater. Chem. Phys. 167 (2015) 145. DOI:10.1016/j.matchemphys.2015.10.02210.1016/j.matchemphys.2015.10.022Search in Google Scholar

[6] I.R. Ibrahim, K.A. Matori, I. Ismail, Z. Awang, S.N.A. Rusly, R. Nazlan, F.M. Idris, M.M.M. Zulkimi, N.H. Abdullah, M.S. Mustaffa, F.N. Shafiee, M. Ertugrul: Sci. Rep. 10 (2020) 1. DOI:10.1038/s41598-020-60107-110.1038/s41598-020-60107-1Search in Google Scholar PubMed PubMed Central

[7] R. Benzerga, M. Badard, C. Mejean, A. El Assal, C. Le Paven, A. Sharaiha: J. Electron. Mater. 49 (2020) 2999. DOI:10.1007/s11664-020-07998-y10.1007/s11664-020-07998-ySearch in Google Scholar

[8] C. Liu, B. Wang, C. Mu, K. Zhai, F. Wen, J. Xiang, A. Nie, Z. Liu: J. Magn. Magn. Mater. 502 (2020) 166432. DOI:10.1016/j.jmmm.2020.16643210.1016/j.jmmm.2020.166432Search in Google Scholar

[9] P. Heidari, S. Masoudpanah: J. Alloys Compd. 834 (2020): p. 155166. DOI:10.1016/j.jallcom.2020.15516610.1016/j.jallcom.2020.155166Search in Google Scholar

[10] Z. Wu, H. Zheng, G. Zhang, Y. Deng, Z. Meng, H.U. Wahab: Mater. Chem. Phys. 244 (2020) 122648. DOI:10.1016/j.matchemphys.2020.12264810.1016/j.matchemphys.2020.122648Search in Google Scholar

[11] F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou: Composites Part B 137 (2018) 260. DOI:10.1016/j.compositesb.2017.11.02310.1016/j.compositesb.2017.11.023Search in Google Scholar

[12] H. Sözeri, Z. Mehmedi, H. Kavas, A. Baykal: Ceram. Int. 41(8) (2015) 9602. DOI:10.1016/j.ceramint.2015.04.02210.1016/j.ceramint.2015.04.022Search in Google Scholar

[13] L. Deng, Y. Zhao, Z. Xie, Z. Liu, C. Tao, R. Deng: RSC Adv. 8 (2018) 42009. DOI:10.1039/C8RA08783 K10.1039/C8RA08783KSearch in Google Scholar PubMed PubMed Central

[14] Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati: J. Magn. Magn. Mater. 397 (2016) 101. DOI:10.1016/j.jmmm.2015.08.07810.1016/j.jmmm.2015.08.078Search in Google Scholar

[15] A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd: J. Alloys Compd. 583 (2014) 325. DOI:10.1016/j.jallcom.2013.08.18810.1016/j.jallcom.2013.08.188Search in Google Scholar

[16] A. Baniasadi, A. Ghasemi, M.A. Ghadikolaei, A. Nemati, E. Paimozd: J. Mater. Sci.: Mater. Electron. 27 (2016) 1901. DOI:10.1007/s10854-015-3971-610.1007/s10854-015-3971-6Search in Google Scholar

[17] K.-K. Ji, Y. Li, M.-S. Cao: J. Mater. Sci.: Mater. Electron. 27 (2016) 5128. DOI:10.1007/s10854-016-4404-x10.1007/s10854-016-4404-xSearch in Google Scholar

[18] J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Joshi, S.R. Mishra, R. Jotania, M. Ghimire, C.C. Chauhang: Mater. Des. 110 (2016) 749. DOI:10.1016/j.matdes.2016.08.04910.1016/j.matdes.2016.08.049Search in Google Scholar

[19] P. Shen, J. Luo, Y. Zuo, Z. Yan, K. Zhang: Ceram. Int. 43(6) (2017) 4846. DOI:10.1016/j.ceramint.2016.12.10710.1016/j.ceramint.2016.12.107Search in Google Scholar

[20] A. Trukhanov, S. Trukhanov, V. Kostishyn, L. Panina, V. Korovushkin, V. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova: J. Magn. Magn. Mater. 462 (2018) 127. DOI:10.1016/j.jmmm.2018.05.00610.1016/j.jmmm.2018.05.006Search in Google Scholar

[21] P. Kaur, S. Chawla, S.B. Narang, K. Pubby: J. Magn. Magn. Mater. 422 (2017) 304. DOI:10.1016/j.jmmm.2016.08.09510.1016/j.jmmm.2016.08.095Search in Google Scholar

[22] W. Widanarto, S. Khaeriyah, S.K. Ghoshal, C. Kurniawan, M. Effendi, W.T. Cahyanto: J. Rare Earths 37 (2019) 1320. DOI:10.1016/j.jre.2019.01.00810.1016/j.jre.2019.01.008Search in Google Scholar

[23] C. Liu, G. Fang, Z. Li, Y. Zhang, X. Zhao, K. Peng, Y. Zhang, J. Zou: Mater. Lett. 244 (2019) 147. DOI:10.1016/j.matlet.2019.02.02510.1016/j.matlet.2019.02.025Search in Google Scholar

[24] A. Baykal, I˙. Ünver, U. Topal, H. Sözeri: Ceram. Int. 43 (2017) 14023. DOI:10.1016/j.ceramint.2017.07.13410.1016/j.ceramint.2017.07.134Search in Google Scholar

[25] H.-L. Xu, H. Bi, R.-B. Yang: J. Appl. Phys. 111 (2012) 07A522. DOI:10.1063/1.369152710.1063/1.3691527Search in Google Scholar

[26] J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai: Carbon 104 (2016) 214. DOI:10.1016/j.carbon.2016.04.00610.1016/j.carbon.2016.04.006Search in Google Scholar

[27] R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan, J. Shi, Y. Liu, M. Zheng: Chem. Eng. J. 384 (2020) 123266. DOI:10.1016/j.cej.2019.12326610.1016/j.cej.2019.123266Search in Google Scholar

[28] L. Wang, H. Yu, X. Ren, G. Xu: J. Alloys Compd. 588 (2014) 212. DOI:10.1016/j.jallcom.2013.11.07210.1016/j.jallcom.2013.11.072Search in Google Scholar

[29] C. Liu, Y. Zhang, Y. Tang, Z. Wang, N. Ma, P. Du: J. Mater. Chem. C 5 (2017) 3461. DOI:10.1039/C7TC00393E10.1039/C7TC00393ESearch in Google Scholar

[30] K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, D. Kumar: RSC Adv. 8 (2018) 19600. DOI:10.1039/C8RA02455C10.1039/C8RA02455CSearch in Google Scholar

[31] R. Topkaya: J. Alloys Compd. 725 (2017) 1230. DOI:10.1016/j.jallcom.2017.07.24810.1016/j.jallcom.2017.07.248Search in Google Scholar

[32] R. Farazi, M. Vaezi, M. Molaei, M. Saeidifar, A. Behnam-Ghader: Mater. Today: Proc. 5 (2018) 15726. DOI:10.1016/j.matpr.2018.04.18410.1016/j.matpr.2018.04.184Search in Google Scholar

[33] M. Hakimi, P. Alimard, M. Yousefi: Ceram. Int. 40 (2014) 11957. DOI:10.1016/j.ceramint.2014.04.03210.1016/j.ceramint.2014.04.032Search in Google Scholar

[34] A. González-Angeles, G. Mendoza-Suarez, A. Gruskova, M. Papanova, J. Slama: Mater. Lett. 59 (2005) 26. DOI:10.1016/j.matlet.2004.09.01210.1016/j.matlet.2004.09.012Search in Google Scholar

[35] C.P.P. Wong, C.W. Lai, K.M. Lee and S.B.A. Hamid: Materials 8 (2015) 7118. DOI:10.3390/ma810536310.3390/ma8105363Search in Google Scholar

[36] O. Kubo, E. Ogawa, J. Magn. Magn. Mater. 134 (1994).) 376. DOI:10.1016/0304-8853(94)00147-210.1016/0304-8853(94)00147-2Search in Google Scholar

[37] Z. Su, L. Tan, J. Tao, C. Zhang, R. Yang, F. Wen: Phys. Status Solidi B 255 (2018) 1700553. DOI:10.1002/pssb.20170055310.1002/pssb.201700553Search in Google Scholar

[38] Z. Yang, Y. Wan, G. Xiong, D. Li, Q. Li, C. Ma, R. Guo, H. Luo: Mater. Res. Bull. 61 (2015) 292. DOI:10.1016/j.materresbull.2014.10.00410.1016/j.materresbull.2014.10.004Search in Google Scholar

[39] T. Xia, C. Zhang, N.A. Oyler, X. Chen: J. Mater. Res. 29 (2014) 2198. DOI:10.1557/jmr.2014.22710.1557/jmr.2014.227Search in Google Scholar

[40] Y. Lai, S. Wang, D. Qian, S. Zhong, Y. Wang, S. Han, W. Jiang: Ceram. Int. 43 (2017) 12904. DOI:10.1016/j.ceramint.2017.06.18810.1016/j.ceramint.2017.06.188Search in Google Scholar

[41] C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang: Appl. Phys. Lett. 98(7) (2011) 072906. DOI:10.1063/1.355543610.1063/1.3555436Search in Google Scholar

[42] M. Verma, A.P. Singh, P. Sambyal, B.P. Singh, S. Dhawan, V. Choudhary: Phys. Chem. Chem. Phys. 17 (2015) 1610. DOI:10.1039/C4CP04284 K10.1039/C4CP04284KSearch in Google Scholar

[43] A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan: ACS Appl. Mater. Interfaces 2 (2010) 927. DOI:10.1021/am900893d10.1021/am900893dSearch in Google Scholar PubMed

[44] S.B. Narang, K. Pubby, C. Singh: J. Electron. Mater. 46 (2017) 718. DOI:10.1007/s11664-016-5059-310.1007/s11664-016-5059-3Search in Google Scholar

[45] X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du: J. Mater. Chem. C 4 (2016) 1860. DOI:10.1039/C6TC00248J10.1039/C6TC00248JSearch in Google Scholar

Received: 2020-09-04
Accepted: 2021-02-25
Published Online: 2021-06-22
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 2.12.2023 from
Scroll to top button