Accessible Requires Authentication Published by De Gruyter May 8, 2021

Effects of sintering temperature on the microstructural properties of Al2O3–Y2O3 powder mixtures

Serkan Abalı and Songül Kılınç

Abstract

In this study, YAlO3 (YAP) was produced at low temperatures by a powder sintering process. Al2O3–Y2O3 powder mixtures were subjected to heat treatment at different temperatures. The relationship between the sintering temperature and the emergence of new phases was investigated via X-ray diffraction, and supported by energy dispersive X-ray spectroscopy. The crystallization of the monoclinic yttrium aluminum oxide (Y4Al2O9) occurred at 1 000 °C, whereas the yttrium aluminum perovskite (YAlO3) crystallization occurred at 1 100°C. Energy dispersive X-ray spectroscopy analysis showed yttrium content in the sample containing Al2O3–YAlO3 powder sintered at 1100 °C, associated with the YAlO3 phase formed at this temperature. Brunauer–Emmett–Teller surface analysis showed a significant decrease in the pore volume of the sample sintered at 1 100°C.

Keywords: Sintering; Al2O3; Y2O3; Powder

Dr. Serkan Abali Department of Materials Science and Engineering Çanakkale Onsekiz Mart University Çanakkale 17100 Turkey Tel.: +90 286 218 00 18-21045

References

[1] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, Y. Kohtoku: J. Mater. Sci. 33 (1998) 1217. DOI:10.1023/A:1004377626345 Search in Google Scholar

[2] L. Olmos, C.L. Martin, D. Bouvard: Powder Technol. 190 (2009) 134. DOI:10.1016/j.powtec.2008.04.057 Search in Google Scholar

[3] D. Bouvard: Powder Technol. 111 (2000) 231. DOI:10.1016/s0032-5910(99)00293-4 Search in Google Scholar

[4] Q. Zhang, F. Saito: Powder Technol. 129 (2003) 86. DOI:10.1016/S0032-5910(02)00136-5 Search in Google Scholar

[5] B. Lin, D. Yi, H. Liu, J. Xu, B. Wang: J. Alloys Compd. 814 (2020) 152325. DOI:10.1016/j.jallcom.2019.152325 Search in Google Scholar

[6] Y. Yu, W. Zhang, W. Dong, J. Yang, Y. Feng: Mat. Sci. Eng. A-Struct. 638 (2015) 38. DOI:10.1016/j.msea.2015.04.050 Search in Google Scholar

[7] H. Wang, L. Gao: Ceram. Int. 27 (2001) 721. DOI:10.1016/S0272-8842(01)00009-8 Search in Google Scholar

[8] P. Palmero, A. Simone, C. Esnouf, G. Fantozzi, L. Montanaro: J. Eur. Ceram. Soc. 26 (2006) 941. DOI:10.1016/j.jeurceramsoc.2004.12.020 Search in Google Scholar

[9] H. Yasuda, I. Ohnaka, Y. Mizutani, A. Sugiyama, T. Morikawa, S. Takeshima, T. Sakimura, Y. Waku: Sci. Technol. Adv. Mat. 5 (2004) 207. DOI:10.1016/j.stam.2003.10.022 Search in Google Scholar

[10] H. Yasuda, Y. Mizutani, I. Ohnaka, A. Sugiyama, Y. Waku: Mater. Trans. 42 (2001) 2124. DOI:10.2320/matertrans.42.2124 Search in Google Scholar

[11] S. Abalı, C.U. Karaçam: Proceedings 2 (2018) 1407. DOI:10.3390/proceedings2231407 Search in Google Scholar

[12] J.S. Abell, I.R. Harris, B. Cockayne, B. Lent: J. Mater. Sci. 9 (1974) 527. DOI:10.1007/BF00551870 Search in Google Scholar

[13] B. Cockayne: J. Less-Common Met. 114 (1985) 199. DOI:10.1016/0022-5088(85)90402-3 Search in Google Scholar

[14] M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, W.T. Thompson: J. Eur. Ceram. Soc. 26 (2006) 3515. DOI:10.1016/j.jeurceramsoc.2005.12.008 Search in Google Scholar

[15] D. Liu, Y. Gao, J. Liu, F. Liu, K. Li, H. Su, Y. Wang, L. An: Scripta Mater. 114 (2016) 108. DOI:10.1016/j.scriptamat.2015.12.002 Search in Google Scholar

[16] J. Llorca, V. Orera: Prog. Mater. Sci. 51 (2006) 711. DOI:10.1016/j.pmatsci.2005.10.002 Search in Google Scholar

[17] N. Nakagawa, H. Ohtsubo, A. Mitani, K. Shimizu, Y. Waku: J. Eur. Ceram. Soc. 25 (2005) 1251. DOI:10.1016/j.jeurceramsoc.2005.01.030 Search in Google Scholar

[18] A. Yoshikawa, B.M. Epelbaum, T. Fukuda, K. Suzuki, Y. Waku: Jpn. J. Appl. Phys. 38 (1999) L55. DOI:10.1143/JJAP.38.L55 Search in Google Scholar

[19] Y. Mizutani, H. Yasuda, I. Ohnaka, N. Maeda, Y. Waku: J. Cryst. Growth 244 (2002) 384. DOI:10.1016/S0022-0248(02)01655-X Search in Google Scholar

[20] F. Schmid, D. Viechnicki: J. Mater. Sci. 5 (1970) 470. DOI:10.1007/BF00556032 Search in Google Scholar

[21] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, Y. Kohtoku: J. Mate.r Sci. 33 (1998) 4943. DOI:10.1023/A:1004486303958 Search in Google Scholar

[22] C.S. Frazer, E.C. Dickey, A. Sayir: J. Cryst. Growth 233 (2001) 187. DOI:10.1016/S0022-0248(01)01590-1 Search in Google Scholar

[23] M.C. Mesa, P.B. Oliete, V.M. Orera, J.Y. Pastor, A. Martín, J. Llorca: J. Eur. Ceram. Soc. 31 (2011) 1241. DOI:10.1016/j.jeurceramsoc.2010.05.004 Search in Google Scholar

[24] E.S. Lima, L.H.L. Louro, J.B. de Campos, R.R. de Avillez, C.A. Costa, in: Proceedings of the EUROPM2007, European Powder Metallurgy Association, Shrewsbury (2007) 89. Search in Google Scholar

[25] C. Oelgardt, J. Anderson, J.G. Heinrich, G.L. Messing: J. Eur. Ceram. Soc. 30 (2010) 649. DOI:10.1016/j.jeurceramsoc.2009.09.011 Search in Google Scholar

[26] W.Q. Li, L. Gao: Nanostruct. Mater. 11 (1999) 1073. DOI:10.1016/S0965-9773(99)00396-7 Search in Google Scholar

[27] R. Lach, K. Haberko, B. Trybalska: Process. Appl. Ceram. 4 (2010) 1. DOI:10.2298/PAC1001001L Search in Google Scholar

[28] H. Wang, L. Gao, Z. Shen, M. Nygren: J. Eur. Ceram. Soc. 21 (2001) 779. DOI:10.1016/S0955-2219(00)00262-4 Search in Google Scholar

[29] R. Lach, K. Haberko, M.M. Bućko, M. Szumera, G. Grabowski: J. Eur. Ceram. Soc. 31 (2011) 1889. DOI:10.1016/j.jeurceramsoc.2011.04.003 Search in Google Scholar

[30] P. Palmero, G. Fantozzi, F. Lomello, G. Bonnefont, L. Montanaro: Ceram. Int. 38 (2012) 433. DOI:10.1016/j.ceramint.2011.07.024 Search in Google Scholar

[31] E. de Souza Lima, L.H.L. Louro, R. de Freitas Cabral, J.B. de Campos, R.R. de Avillez, C.A. Da Costa: J. Mater. Res. Technol. 2 (2013) 18. DOI:10.1016/j.jmrt.2013.03.005 Search in Google Scholar

[32] F. Sommer, F. Kern, H.F. El-Maghraby, M.A. El-Ezz, M. Awaad, R. Gadow, S.M. Naga: Ceram. Int. 38 (2012) 4819. DOI:10.1016/j.ceramint.2012.02.070 Search in Google Scholar

[33] J. Markmann, A. Tschöpe, R. Birringer: Acta Mater. 50 (2002) 1433. DOI:10.1016/S1359-6454(01)00448-7 Search in Google Scholar

[34] J.-G. Li, J.-H. Lee, T. Mori, Y. Yajima, S. Takenouchi, T. Ikegami: J. Ceram. Soc. Jpn. 108 (2000) 439. DOI:10.2109/jcersj.108.1257_439 Search in Google Scholar

[35] M.K. Cinibulk: J. Am. Ceram. Soc. 87 (2004) 692. DOI:10.1111/j.1551-2916.2004.00692.x Search in Google Scholar

[36] M.K. Cinibulk, K.A. Keller, T.-I. Mah: J. Am. Ceram. Soc. 87 (2004) 881. DOI:10.1111/j.1551-2916.2004.00881.x Search in Google Scholar

[37] S. Lartigue-Korinek, C. Carry, L. Priester: J. Eur. Ceram. Soc. 22 (2002) 1525. DOI:10.1016/S0955-2219(01)00471-X Search in Google Scholar

[38] A. Egelja, J. Majstorovic, N. Vukovic, M. Stankovic, D. Bucevac: Sci. Sinter. 48 (2016) 303. DOI:10.2298/SOS1603303E Search in Google Scholar

[39] L. Wen, X. Sun, Z. Xiu, S. Chen, C.-T. Tsai: J. Eur. Ceram. Soc. 24 (2004) 2681. DOI:10.1016/j.jeurceramsoc.2003.09.001 Search in Google Scholar

[40] A. Prnová, J. Valúchová, M. Parchovianský, W. Wisniewski, P. Švančárek, R. Klement, L̂. Hric, E. Bruneel, D. Galusek: J. Eur. Ceram. Soc. 40 (2020) 852. DOI:10.1016/j.jeurceramsoc.2019.10.017 Search in Google Scholar

[41] T. Nagira, H. Yasuda, T. Sakimura, A. Kawaguchi: Mater. Trans. 48 (2007) 2312. DOI:10.2320/matertrans.MB200705 Search in Google Scholar

[42] S.A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj: J. Alloy. Compd. 506 (2010) 640. DOI:10.1016/j.jallcom.2010.07.030 Search in Google Scholar

[43] A. Towata, H.J. Hwang, M. Yasuoka, M. Sando, K. Niihara: J. Am. Ceram. Soc. 81 (1998) 2469. DOI:10.1111/j.1151-2916.1998.tb02645.x Search in Google Scholar

[44] H. Yasuda, I. Ohnaka, Y. Mizutani, Y. Waku: Sci. Technol. Adv. Mat. 2 (2001) 67. DOI:10.1016/S1468-6996(01)00027-4 Search in Google Scholar

[45] F.J. Paneto, J.L. Pereira, J.O. Lima, E.J. Jesus, L.A. Silva, E. Sousa Lima, R.F. Cabral, C. Santos: Int. J. Refract. Met. H. 48 (2015) 365. DOI:10.1016/j.ijrmhm.2014.09.010 Search in Google Scholar

[46] J. Yu, J.C. Yu, M.K.-P. Leung, W. Ho, B. Cheng, X. Zhao, J. Zhao: J. Catal. 217 (2003) 69. DOI:10.1016/S0021-9517(03)00034-4 Search in Google Scholar

[47] K.S.W. Sing: Pure Appl. Chem. 57 (1985) 603. DOI:10.1351/pac198557040603 Search in Google Scholar

[48] K.C. Kim, T.-U. Yoon, Y.-S. Bae: Micropor. Mesopor. Mat. 224 (2016) 294. DOI:10.1016/j.micromeso.2016.01.003 Search in Google Scholar

[49] Y. Liu, W. Wang, A. Wang: Powder Technol. 225 (2012) 124. DOI:10.1016/j.powtec.2012.03.049 Search in Google Scholar

[50] J. Choi, J. Kim, K.S. Yoo, T.G. Lee: Powder Technol. 181 (2008) 83. DOI:10.1016/j.powtec.2007.06.022 Search in Google Scholar

[51] Z. Chen, W. Yan, Y. Dai, S. Schafföner, B. Han, N, Li: Ceram. Int. 45 (2019) 8533. DOI:10.1016/j.ceramint.2019.01.168 Search in Google Scholar

[52] H.-J. Liu, J. Wang, C.-X. Wang, Y.-Y. Xia: Adv. Energy Mater. 1 (2011) 1101. DOI:10.1002/aenm.201100255 Search in Google Scholar

[53] A. Kocjan, T. Konegger, A. Dakskobler: J. Mater. Sci. 52 (2017) 11168. DOI:10.1007/s10853-017-0894-z Search in Google Scholar

[54] W. Klinthong, C.-H Huang, C.-S Tan: Ind. Eng. Chem. Res. 55 (2016) 6481. DOI:10.1021/acs.iecr.6b00644 Search in Google Scholar

Received: 2020-09-30
Accepted: 2021-02-25
Published Online: 2021-05-08
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany