Accessible Unlicensed Requires Authentication Published by De Gruyter August 6, 2021

Si3N4/Graphene binary particles reinforced hybrid titanium composites and their characterization

Tugba Mutuk and Mevlüt Gürbüz

Abstract

This study reports on silicon nitride (Si3N4) and graphene nanoplatelets binary powder reinforced hybrid titanium composites obtained by a powder metallurgy method. Si3N4 powder was added at 3 wt.% and graphene nanoplatelets were added in various amounts (0.15, 0.30, 0.45, 0.60 wt.%) in the titanium matrix. Density, micro-Vickers hardness, compressive behavior, wear properties and microstructure of the hybrid composites were evaluated. Addition of different percentages of graphene nanoplatelets and 3 wt.% Si3N4 to the titanium matrix composites significantly enhanced mechanical properties. The highest hardness (634 HV) and compressive strength (1458 MPa) values were measured for 0.15 wt.% graphene nanoplatelets and 3 wt.% Si3N4 added titanium hybrid composite. The lowest mass loss and wear rate (Δm = 4 mg, W = 6.1×10–5 mm3 (N m)–1) values were measured for the same 0.15 wt.% graphene nanoplatelets and 3 wt.% Si3N4 added titanium hybrid composite compared with pure Ti.


Dr Tugba Mutuk Department of Metallurgical and Materials Engineering Ondokuz Mayis University Samsun 55200 Turkey Tel.: +90 362 1919

Acknowledgement

This study has been fully supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No: 217M154.

References

[1] X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, F.C. Wang, Z.H. Zhang, Y.X. Ge, R. Shi, Y. Wu, Z. Wang, D.D. Wang, S. Chang: Carbon 137 (2018) 146. DOI:10.1016/j.carbon.2018.05.01310.1016/j.carbon.2018.05.013Search in Google Scholar

[2] S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh: Compos Part A-Appl S. 48 (2013) 57. DOI: 10.1016/j.compositesa.2012.12.00510.1016/j.compositesa.2012.12.005Search in Google Scholar

[3] E. Ziya, B.T. Elif, B. S¸akir: Turkish J. Eng. Env. Sci. 33 (2009) 207.Search in Google Scholar

[4] D. Alman, J. Hawk: Wear 225–229 (1999) 629. DOI:10.1016/S0043-1648(99)00065-410.1016/S0043-1648(99)00065-4Search in Google Scholar

[5] F.M. Kgoete, A. Popoola, O. Fayomi: Def. Technol. 14 (2018) 403. DOI:10.1016/j.dt.2018.04.01110.1016/j.dt.2018.04.011Search in Google Scholar

[6] C. Monticelli, F. Zucchi, A. Tampieri: Wear 266 (2009) 327. DOI:10.1016/j.wear.2008.07.00510.1016/j.wear.2008.07.005Search in Google Scholar

[7] J. Xu, K. Kato, T. Hirayama: Wear 205 (1997) 55. DOI:10.1016/S0043-1648(96)07283-310.1016/S0043-1648(96)07283-3Search in Google Scholar

[8] E. Carrasquero, A. Bellosi, M.H. Staia: Int. J. Refract. Met. Hard Mater. 23 (2005) 391. DOI:10.1016/j.ijrmhm.2005.06.00410.1016/j.ijrmhm.2005.06.004Search in Google Scholar

[9] A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal: Int. Mater. Rev. 62 (2017) 241. DOI:10.1080/09506608.2016.121948110.1080/09506608.2016.1219481Search in Google Scholar

[10] M. Rashad, F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, J. Mao: J. Ind. Eng. Chem. 23 (2015) 243. DOI:10.1016/J.JIEC.2014.08.02410.1016/J.JIEC.2014.08.024Search in Google Scholar

[11] Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, S. Wang: J. Alloys Compd. 696 (2017) 498. DOI:10.1016/j.jallcom.2016.11.30210.1016/j.jallcom.2016.11.302Search in Google Scholar

[12] X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y. Wu, Z.J. Fu, D.H. Yu: Mater. Sci. Eng. A 687 (2017) 164. DOI:10.1016.j.msea.2017.01.07210.1016.j.msea.2017.01.072Search in Google Scholar

[13] Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao, X.B. Liu: Mater. Des. 109 (2016) 256. DOI:10.1016/j.matdes.2016.07.07710.1016/j.matdes.2016.07.077Search in Google Scholar

[14] Z. Zhang, Y. Liang in: B.H. Abu Bakar, M. Othman, N. Mohamad (Eds.) DEStech trans. eng. technol. res, ICAENM (2017). DOI:10.12783/dtetr/icaenm2017/779810.12783/dtetr/icaenm2017/7798Search in Google Scholar

[15] J. Liu, M. Wu, Y. Yang, G. Yang, H. Yan, K. Jiang: J. Alloys Compd. 765 (2018) 1111. DOI:10.1016/j.jallcom.2018.06.14810.1016/j.jallcom.2018.06.148Search in Google Scholar

[16] Z. Xu, X. Shi, W. Zhai, J. Yao, S. Song, Q. Zhang: Carbon 67 (2014) 168. DOI:10.1016/j.carbon.2013.09.07710.1016/j.carbon.2013.09.077Search in Google Scholar

[17] M. Gürbüz, T. Mutuk: J. Compos. Mater. 52 (2018) 543. DOI:10.1177/002199831774514310.1177/0021998317745143Search in Google Scholar

[18] F. Thümmler, R. Oberacker: An introduction to powder metallurgy, Institute of Materials, London (1993).Search in Google Scholar

[19] G.B. Veeresh Kumar, C. Rao, N. Selvaraj: Compos. Part B: Eng. 43 (2012) 1185. DOI:10.1016/j.compositesb.2011.08.04610.1016/j.compositesb.2011.08.046Search in Google Scholar

[20] H. Fallahdoost, A. Nouri, A. Azimi: J. Phys. Chem. Solids 93 (2016) 137. DOI:10.1016/j.jpcs.2016.02.02010.1016/j.jpcs.2016.02.020Search in Google Scholar

[21] D.S. Prasad, C. Shoba, N. Ramanaiah: J. Mater. Res. Technol. 3 (2014) 79. DOI:10.1016/j.jmrt.2013.11.00210.1016/j.jmrt.2013.11.002Search in Google Scholar

[22] M.C. S¸ enel, M. Gürbüz, E. Koç: Pamukkale J. Eng. Sci. 23 (2017) 974. DOI:10.5505/pajes.2017.6590210.5505/pajes.2017.65902Search in Google Scholar

[23] A. Parveen, N.R. Chauhan, M. Suhaib: Mater. Res. Express 6 (2019) 42001. DOI:10.1088/2053-1591/aaf8d810.1088/2053-1591/aaf8d8Search in Google Scholar

[24] P. Sharma, S. Sharma, D. Khanduja: J. Asian Ceram. Soc. 3 (2015) 352. DOI:10.1016/j.jascer.2015.07.00210.1016/j.jascer.2015.07.002Search in Google Scholar

[25] Ö. Güler, N. Bag˘cı: J. Mater. Res. Technol. 9 (2020) 6808. DOI:10.1016/j.jmrt.2020.01.07710.1016/j.jmrt.2020.01.077Search in Google Scholar

[26] H.J. Ryu, S.I. Cha, S.H. Hong: J. Mater. Res. 18 (2003) 2851. DOI:10.1557/JMR.2003.039810.1557/JMR.2003.0398Search in Google Scholar

[27] M. Rashad, F. Pan, J. Zhang, M. Asif: J. Alloys Compd. 646 (2015) 223. DOI:10.1016/j.jallcom.2015.06.05110.1016/j.jallcom.2015.06.051Search in Google Scholar

[28] Y. Tang, X. Yang, R. Wang, M. Li: Mater. Sci. Eng. A 599 (2014) 247. DOI:10.1016/j.msea.2014.01.06110.1016/j.msea.2014.01.061Search in Google Scholar

[29] J. Zhu, X. Liu, X. Zhou, Q. Yang: Comput. Mater. Sci. 188 (2021) 110179. DOI:10.1016/j.commatsci.2020.11017910.1016/j.commatsci.2020.110179Search in Google Scholar

[30] Z. Cao, J. Li, H. Zhang, W. Li, X. Wang: J. Iron Steel Res. Int. 27 (2020) 1357. DOI:10.1007/s42243-020-00417-w10.1007/s42243-020-00417-wSearch in Google Scholar

[31] F.C. Wang, Z.-H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu, S. Osamu: Carbon 95 (2015) 396. DOI:10.1016/j.carbon.2015.08.06110.1016/j.carbon.2015.08.061Search in Google Scholar

[32] M.C. S¸ enel, M. Gürbüz, E. Koç: J. Mater. Sci. Technol. 34 (2018) 1980. DOI:10.1080/02670836.2018.150183910.1080/02670836.2018.1501839Search in Google Scholar

[33] W. Zhai, X. Shi, J. Yao, A.M.M. Ibrahim, Z. Xu, Q. Zhu, Y. Xiao, L. Chen, Q. Zhang: Compos. Part B: Eng. 70 (2015) 149. DOI:10.1016/j.compositesb.2014.10.05210.1016/j.compositesb.2014.10.052Search in Google Scholar

[34] R. Liu, D. Li: Wear 251 (2001) 956. DOI:10.1016/S0043-1648(01)00711-610.1016/S0043-1648(01)00711-6Search in Google Scholar

Received: 2020-10-16
Accepted: 2021-06-11
Published Online: 2021-08-06
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany