Accessible Requires Authentication Published by De Gruyter August 18, 2021

Role of Ti and Y in the nucleation of the primary α-Al of Al7075–Ti–Y natural composites and influence of ultrasonic vibration

Xiao-Hui Chen, Lei Liu, Jinbo Li and Fayun Zhang

Abstract

Al7075–Ti–Y natural composites were prepared by using a combination of ultrasonic vibration and casting. The effects of titanium (Ti) and yttrium (Y) on the nucleation of primary α-Al were studied and the influencing mechanism of Y on the TiAl3 formation was analysed. Furthermore, a reaction kinetics model of TiAl3 under ultrasonic vibration was established. The results showed that the uniformly distributed TiAl3 and Al3Y nano-particles resulted in grain refinement. Y changed the morphology of TiAl3 and the appearance of corrosion pits was related to the fact that Y was dissolved within the TiAl3 structure to form Ti(Al,Y)3. The established model revealed that ultrasonic vibration significantly promoted the formation of TiAl3, and that ultrasonic time was the main factor affecting its growth.


Dr. Xiao-Hui Chen Xinyu University No. 2666 Yangguan load High-tech zone 338004 Xinyu P. R. China Tel.: +86 0790 666 6108

Funding statement: Authors express their gratitude to the National Natural Science Foundation of China (Grant No. 52065066), the Natural Science Foundation of Jiangxi Province (Grant No. 20192BAB206030), and the Science and Technology Program of Education Office of Jiangxi Province (Grant No. GJJ191050) for financial support.

References

[1] M. Sharifitabar, A. Sarani, S. Khorshahian, M. Shafiee Afarani: Mater. Des. 32 (2011) 4164. DOI:10.1016/j.matdes.2011.04.048 Search in Google Scholar

[2] H. Su, W. Gao, Z. Feng, Z. Lu: Mater. Des. 36 (2012) 590. DOI:10.1016/j.matdes.2011.11.064 Search in Google Scholar

[3] X.Y. Yang, Q.S. Mei, X.M. Mei, Y. Ma, F. Chen, L. Wan, J.Y. Li: Mater. Sci. Eng. A 754 (2019) 309. DOI:10.1016/j.msea.2019.03.076 Search in Google Scholar

[4] J.M. Wu, S.L. Zheng, Z.Z. Li: Mater. Sci. Eng. A 289 (2000) 246. DOI:10.1016/S0921-5093(00)00886-8 Search in Google Scholar

[5] Y. Yang, J. Lan, X. Li: Mater. Sci. Eng. A 380 (2004) 378. DOI:10.1016/j.msea.2004.03.073 Search in Google Scholar

[6] Z. Liu, Q. Han, J. Li, W. Huang: J. Mater. Process. Tech. 212 (2012) 365. DOI:10.1016/j.jmatprotec.2011.09.021 Search in Google Scholar

[7] Q.M. Liu, Q.J. Zhai, F.P. Qi, Y. Zhang: Mater. Lett. 61 (2007) 2422. DOI:10.1016/j.matlet.2006.09.027 Search in Google Scholar

[8] X.H. Chen, H. Yan: J. Mater. Res. 33 (2018) 4349. DOI:10.1557/jmr.2018.343 Search in Google Scholar

[9] S.J. Abraham, I. Dinaharan, J.D.R. Selvam: Acta Metall. Sin. 32 (2018) 52. DOI:10.1007/s40195-018-0806-5 Search in Google Scholar

[10] Z. Chen, J. Li, A. Borbely, G. Ji, S.Y. Zhong, Y. Wu, M.L. Wang, H.W. Wang: Mater. Des. 88 (2015) 999. DOI:10.1016/j.matdes.2015.09.127 Search in Google Scholar

[11] H. Li, T. Sritharan, Y.M. Lam, N.Y. Leng: J. Mater. Process. Tech. 66 (1997) 253. DOI:10.1016/S0924-0136(96)02536-8 Search in Google Scholar

[12] S.H. Seyed Ebrahimi, M. Emamy: Mater. Des. 31 (2010) 200. DOI:10.1016/j.matdes.2009.06.031 Search in Google Scholar

[13] S. Babaniaris, M. Ramajayam, L. Jiang, T. Dorin: Light Met. (2019), The Minerals, Metals & Materials Series, Springer, Cham. DOI:10.1007/978-3-030-05864-7-181 Search in Google Scholar

[14] T. Ma, Z. Chen, Z. Nie, H. Huang: J. Rare Earth. 31 (2013) 622. DOI:10.1016/S1002-0721(12)60331-7 Search in Google Scholar

[15] W. Ding, X. Zhao, T. Chen, H. Zhang, X. Liu, Y. Cheng, D. Lei: J. Alloys Compd. 830 (2020) 154685. DOI:10.1016/j.jallcom.2020.154685 Search in Google Scholar

[16] W. Peng, Q. Du, G. Wu, W. Dan, W. Hu, J. Zhang: Surf. Coat. Tech. 299 (2016) 56. DOI:10.1016/j.surfcoat.2016.04.074 Search in Google Scholar

[17] B.S. Murty, S.A. Kori, M. Chakraborty: Int. Mater. Rev. 47 (2002) 1. DOI:10.1179/095066001225001049 Search in Google Scholar

[18] S. Liu, Y. Du, H. Chen: Calphad 30 (2006) 334. DOI:10.1016/j.calphad.2006.01.001 Search in Google Scholar

[19] H. Jia, L. Sun, X. Zhang, Y. Wang: J. Chinese Rare Earth Soc. 3 (1985) 66. DOI: CNKI:SUN:XTXB.0.1985–02–013. Search in Google Scholar

[20] C. Colinet, A. Pasturel: Intermetallics 10 (2002) 751. DOI:10.1016/s0966-9795(02)00054-7 Search in Google Scholar

[21] B. Dill, Y. Li, M. Al-Khafaji, W.M. Rainforth, H. Jones: J. Mater. Sci. 29 (1994) 3913. DOI:10.1007/BF00355949 Search in Google Scholar

[22] T. Ma, Z. Chen, Z. Nie, H. Huang: J. Rare Earth. 31 (2013) 622. DOI:10.1016/S1002-0721(12)60331-7 Search in Google Scholar

[23] Y.Q. Xie, X.B. Liu, K. Peng, H.J. Peng: Physica B 353 (2004) 15. DOI:10.1016/j.physb.2004.08.022 Search in Google Scholar

[24] Z. Hu, Z. Yin, Z. Yin, B. Tang, X. Huang, H. Yan, H. Song, C. Luo, X.H. Chen: J. Alloys Compd. 842 (2020) 155836. DOI:10.1016/j.jallcom.2020.155836 Search in Google Scholar

[25] B.L. Bramfitt: Metall. Mater. Trans. B 1 (1970) 1987. DOI:10.1007/BF02642799 Search in Google Scholar

[26] X.C. Yan, M.D. Luo: Interface chemistry, Chemical Industry Press, Beijing (2005). Search in Google Scholar

[27] X.H. Chen, H. Yan, X.P. Jie: Int. J. Cast Metal. Res. 28 (2015) 151. DOI:10.1179/1743133614Y.0000000137 Search in Google Scholar

[28] S.J. Doktycz, K.S. Suslick: Science 247 (1990) 1067. PMid:2309118; DOI:10.1126/science.2309118 Search in Google Scholar

[29] L.D. Rozenberg: High-intensity ultrasonic fields of the cavitation zone, in: L.D. Rozenberg (Ed.), Ultrasonic Technology, Springer, US (1971) 345. DOI:10.1007/978-1-4757-5408-7_6 Search in Google Scholar

[30] Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, F.Y. Xie: Mater. Sci. Eng. A 363 (2003) 140. DOI:10.1016/S0921-5093(03)00624-5 Search in Google Scholar

[31] B.F. Schultz, J.B. Ferguson, P.K. Rohatgi: Mater. Sci. Eng. A 530 (2011) 87. DOI:10.1016/j.msea.2011.09.042 Search in Google Scholar

Received: 2020-11-05
Accepted: 2021-04-30
Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany