Accessible Requires Authentication Published by De Gruyter August 18, 2021

Synthesis and characterizations of metal ions doped barium strontium titanate (BST) nanomaterials for photocatalytic and electrical applications: A mini review

Kiflom Gebremedhn Kelele, Aschalew Tadesse, Tegene Desalegn, Suresh Ghotekar, Ruthramurthy Balachandran and Hanabe Chowdappa Ananda Murthy

Abstract

The ferroelectric barium strontium titanate (Ba1-xSrxTiO3) is a homogeneous solid solution prepared from the mixture of barium titanate (BaTiO3), strontium titanate (SrTiO3) and titanium (IV) isopropoxide. Barium strontium titanate (BST) nanomaterials with improved permittivity and dielectric properties due to their nano-properties have attracted great interest for extensive and versatile applications as super capacitors, dielectrics, ceramics and catalysts. Introduction of metal ion dopants into the parent system of BST significantly alters its structural, morphological, electrical, optical and dielectric characteristics. This review is aimed at addressing synthesis, characterization methods, photocatalytic and electrical applications of metal ions doped BST nanomaterials. The effect of doping BST, through metal ions, on its properties and application with most probable reasons have been thoroughly discussed.


Dr. Hanabe Chowdappa Ananda Murthy Department of Chemistry, School of Applied Natural Science Adama Science and Technology University Adama, P.O. Box.1888 Ethiopia Tel.: +251 988683640
Dr. Ruthramurthy Balachandran Department of Electronics and Communications Engg. Adama Science and Technology University Adama Ethiopia

Acknowledgment

Authors greatly acknowledge Adama Science and Technology University, Ethiopia for providing the necessary support towards this work.

References

[1] G. Cao: J. Am. Chem. Soc. 126 (2004) 14679. PMid:15198589; DOI:10.1021/ja0409457 Search in Google Scholar

[2] J. Lahann: Nanomaterials clean up. Nat Nanotechnol. 3 (2008) 320. PMid:18654536; DOI:10.1038/nnano.2008.143 Search in Google Scholar

[3] R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun: Adv. Mater. 22 (2010) 2729. PMid:20473985; DOI:10.1002/adma.201000260 Search in Google Scholar

[4] K.C. Mendoza: MSc thesis. Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording, USA (2010). PMid:20170645; DOI:10.21220/s2-z637-vr32 Search in Google Scholar

[5] A. Seifert, L. Sagalowicz, P. Muralt, N. Setter: 14 (1999) 2012. J.Mater.Res. DOI:10.1557/jmr.1999.0272 Search in Google Scholar

[6] J.Y. Li, L. Zhang, S. Ducharme: Appl. Phys. Lett. 90 (2007) 132901. DOI:10.1063/1.2716847 Search in Google Scholar

[7] P. Kim, N.M. Doss, J.P. Tillotson, PJ. Hotchkiss, MM-J. Pan, SR. Marder: ACS Nano. 22 (2009) 2581. PMid:19655729; DOI:10.1021/nn9006412 Search in Google Scholar

[8] H. Tang, Y. Lin, C. Andrews, H.A. Sodano: Nanotechnology. 22 (2011) 015702. PMid:21135449; DOI:10.1088/0957-4484/22/1/015702 Search in Google Scholar

[9] Q. Meng, W. Li, Y. Zheng, Z. Zhang: J. Appl. Polym. Sci. 116 (2010) 2674. DOI:10.1002/app.31777 Search in Google Scholar

[10] G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M.R. Gadinski: Adv. Mater. 27 (2015) 1450. PMid:25581032; DOI:10.1002/adma.201404591 Search in Google Scholar

[11] Y. Li, X. Yao, L. Zhang: 356 (2004) 1325. Ceram. Int. DOI:10.1016/j.ceramint.2003.12.016 Search in Google Scholar

[12] Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi: Sci Rep. 5 (2015) 9953. PMid:25951408; DOI:10.1038/srep09953 Search in Google Scholar

[13] K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan: Chem. Mater. 11 (1999) 882. DOI:10.1021/cm9803859 Search in Google Scholar

[14] J. Li, L. Meng, W. Li, Z. Zhang: J. Appl. Polym. Sci. 122 (2011) 1659. DOI:10.1002/app.34020 Search in Google Scholar

[15] F.E. Osterloh: Chem. Soc. Rev. 42 (2013) 2294. PMid:23072874; DOI:10.1039/c2cs35266d Search in Google Scholar

[16] S. Otsuka-Yao-Matsuo, T. Omata, S. Ueno, M. Kita. Mater. Trans. 44 (2003) 2124. DOI:10.2320/matertrans.44.2124 Search in Google Scholar

[17] T. Tsumura, K. Sogabe, M. Toyoda: Mat. Sci. Eng. B-Adv. 157 (2009) 113. DOI:10.1016/j.mseb.2008.11.045 Search in Google Scholar

[18] A. Bhardwaj, N.V. Burbure, G.S. Rohrer: J. Am. Ceram. Soc. 93 (2010) 4129. DOI:10.1111/j.1551-2916.2010.04002.x Search in Google Scholar

[19] Y.H. Jun, T-Y. Kim, H.M. Jang: Ferroelectrics. 193 (1997) 109. DOI:10.1080/00150199708228325 Search in Google Scholar

[20] L. Szymczak, L. Kozielski, M. Adamczyk, A. Lisińska-Czekaj, Z. Ujma, D. Czekaj: Ferroelectrics. 349 (2007) 179. DOI:10.1080/00150190701261015 Search in Google Scholar

[21] I. Irzaman, A. Nuraisah, Aminullah, K.A. Hamam, H. Alatas: Ferroelectrics Lett. 45 (2018) 14. DOI:10.1080/07315171.2018.1499361 Search in Google Scholar

[22] N. Scarisoreanu, M. Filipescu, A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu: Appl. Surf. Sci. 253 (2007) 8254. DOI:10.1016/j.apsusc.2007.02.111 Search in Google Scholar

[23] K. Kinoshita, A. Yamaji: J. Appl. Phys. 47 (1976) 371. DOI:10.1063/1.322330 Search in Google Scholar

[24] T. Li, P. Zawadzki, R.A. Stall, S. Liang, Y. Lu: Integr. Ferroelectr. 17 (1997) 127. DOI:10.1080/10584589708012988 Search in Google Scholar

[25] S. Ezhilvalavan, T-Y. Tseng: Mater Chem. Phys. 65 (2000) 227. DOI:10.1016/s0254-0584(00)00253-4 Search in Google Scholar

[26] X. Wang, Y. Zhang, J. Zhu, X. Song, R. Lv.J. Liu: Ceram. Int. 40 (2014) 16557. DOI:10.1016/j.ceramint.2014.08.010 Search in Google Scholar

[27] C. Gomez-Yañez, C. Benitez, H. Balmori-Ramirez: Ceram. Int. 26 (2000) 271. DOI:10.1016/s0272-8842(99)00053-x Search in Google Scholar

[28] I.K. Batttisha, I.S.A. Farag, M. Kamal, M.A. Ahmed, E. Girgis, H.A. El Meleegi.A.Z. Simoes, F. Moura, T.B. Onofre, M.A. Ramirez, J.A. Varela, E. Longo: J. Alloys. Compd. 508 (2010) 620. DOI:10.1016/j.jallcom.2010.08.143 Search in Google Scholar

[29] K.A. Razak, A. Asadov, J. Yoo, W. Gao, M. Hodgson and E. Haemmerle, Int. J. Mod. Phys. B. 20 (2006) 4153. DOI:10.1142/S0217984915500797 Search in Google Scholar

[30] N. Golego, S.A. Studenikin, M. Cocivera: Chem. Mater. 10 (1998) 2000. DOI:10.1021/cm980153+ Search in Google Scholar

[31] Z. Zhong, P.K. Gallagher: J. Mater. Res. 10 (1995) 945. DOI:10.1557/jmr.1995.0945 Search in Google Scholar

[32] F. Schrey: J Am. Ceram. Soc. 48 (1965) 401. DOI:10.1111/j.1151-2916.1965.tb14776.x Search in Google Scholar

[33] J-G. Cheng, J. Tang, J-H. Chu, A-J. Zhang: Appl. Phys. Lett. 77 (2000) 1035. DOI:10.1063/1.1289038 Search in Google Scholar

[34] J. Wang, T. Zhang, R. Pan, J. Jiang, Z. Ma, C. Xiang: Mater. Chem. Phys. 121 (2010) 28. DOI:10.1016/j.matchemphys.2009.12.035 Search in Google Scholar

[35] D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M.C. Mozzatic, C.B. Azzoni: J. Solid State. Chem. 177 (2004) 4494. DOI:10.1016/j.jssc.2004.09.009 Search in Google Scholar

[36] Y. Ohya, T. Ito, Y. Takahashi: J. Jpn. Appl. Phys. 33 (1994) 5272. DOI:10.1143/jjap.33.5272 Search in Google Scholar

[37] M. Zhou, J. Yu, B. Cheng, H. Yu: Mater. Chem. Phys. 93 (2005) 159. DOI:10.1016/j.matchemphys.2005.03.007 Search in Google Scholar

[38] X. Zhang, L. Lei: Mater. Lett. 62 (2008) 895. PMid:18596418; DOI:10.1016/j.matlet.2007.07.007 Search in Google Scholar

[39] D.V. Demydov, K.J. Klabunde: Nato. Sci. Ser. II. Math. (2005) 327. DOI:10.1007/1-4020-3562-4_26 Search in Google Scholar

[40] M. Qin, F. Gao, G. Dong, J. Xu, M. Fu, Y. Wang: J.Alloys. Compd. 762 (2018) 80. DOI:10.1016/j.jallcom.2018.05.202 Search in Google Scholar

[41] T. Zhang, J. Wang, B. Zhang, R. Pan, N. Wan: Microelectron. Eng. 83 (2006) 2446. DOI:10.1016/j.mee.2006.05.005 Search in Google Scholar

[42] M. Dahrul, H. Syafutra, A. Arif, Irzaman, M.N. Indro, Siswadi: AIP Conf. Proc. 43 (2010) 1325. DOI:10.1063/1.4757185 Search in Google Scholar

[43] I. Irzaman, R. Siskandar, Aminullah, Irmansyah, H. Alatas: Integr. Ferroelectr. 168 (2016) 130. DOI:10.1080/10584587.2016.1159537 Search in Google Scholar

[44] X-H. Liu, Z. Xu, S-B. Qu, X-Y. Wei, J-L. Chen. Ceram. Int. 34 (2008) 797. DOI:10.1016/j.ceramint.2007.09.029 Search in Google Scholar

[45] X. Chou, J. Zhai, X. Yao: Mater. Chem. Phys. 109 (2008) 125. DOI:10.1016/j.matchemphys.2007.11.005 Search in Google Scholar

[46] C.G. Fountzoulas, D.M. Potrepka, S.C. Tidrow: MRS Proc. 720 (2002) H2.4. DOI:10.1557/proc-720-h2.4 Search in Google Scholar

[47] J-B. Bao, T-L. Ren, J-S. Liu, X-N. Wang, L-T. Liu, Z-J. Li: Int. Ferroelectrics. 45 (2002) 31. DOI:10.1080/713718226 Search in Google Scholar

[48] K. Astafiev, V. Sherman, A. Tagantsev, N. Setter, P. Petrov, T. Kaydanova: Int. Ferroelectrics. 58 (2003) 1371. DOI:10.1080/10584580390261134 Search in Google Scholar

[49] M. Zhang, Y. Bando, K. Wada: J. Mater. Sci. Lett. 20 (2001) 167. DOI:10.1023/a:1006739713220 Search in Google Scholar

[50] S.J. Limmer, T.L. Hubler, G. Cao: J. Sol. Gel. Sci. Techn. 26 (2003) 577. DOI:10.1023/a:1020772020988 Search in Google Scholar

[51] V.G. Pol, G. Wildermuth, J. Felsche, A. Gedanken, J. Calderon-Moreno: J.Nanosci. Nanotechno. 5 (2005) 975. PMid:16060163; DOI:10.1166/jnn.2005.137 Search in Google Scholar

[52] P.K. Sharma, V.V. Varadan, V.K. Varadan: Chem. Mater. 12 (2000) 2590. DOI:10.1021/cm000041u Search in Google Scholar

[53] Y-C. Liou, C-T. Wu: Ceram. Int. 34 (2008) 517. DOI:10.1016/j.ceramint.2006.11.005 Search in Google Scholar

[54] R. Balachandran, H.K. Yow, B.H. Ong, K.B. Tan, K. Anuar, W.T. Teoh, M.N. Ahmad Fauzi, S. Sreekantan, V. Swaminathan: J.Mater. Sci. 46 (2011) 1806. DOI:10.1007/s10853-010-5004-4 Search in Google Scholar

[55] Y-C. Lu, S. Yu, X. Zeng, R. Sun, C-P. Wong: IET Nanodielectrics 1 (2018) 137. DOI:10.1049/iet-nde.2018.0015 Search in Google Scholar

[56] C. Shen, Q. Liu, Q-F. Liu: Mater. Sci. Eng. B. 111 (2004) 31. DOI:10.1016/j.mseb.2004.03.018 Search in Google Scholar

[57] X. Wang, R. Huang, Y. Zhao, Y. Zhao, H. Zhou, Z. Jia. 533 (2012) 25. J. Alloys. Compd. DOI:10.1016/j.jallcom.2012.04.010 Search in Google Scholar

[58] Irzaman, Irzaman, M. Dahrul, B. Yuliarto, K.A. Hammam, H. Alatas: Ferroelectrics Lett. 45 (2018) 49. DOI:10.1080/07315171.2018.1537333 Search in Google Scholar

[59] M.R. Mohammadi, D.J. Fray: Particuology. 9 (2011) 235. DOI:10.1016/j.partic.2010.08.012 Search in Google Scholar

[60] A. Kaur, A. Singh, L. Singh, S.K. Mishra, P.D. Babu, K. Asokan: Rsc. Adv. 113 (2016) 112363. DOI:10.1039/c6ra21458d Search in Google Scholar

[61] N. Shaban, M. Bahar: J. Theor. Coput. Sci. 4 (2017) 2. DOI:10.4172/2376-130x.1000157 Search in Google Scholar

[62] A.S. Attar, E.S. Sichani, S. Sharafi: J. Mater. Res. Technol. 6 (2017) 108. DOI:10.1016/j.jmrt.2016.05.001 Search in Google Scholar

[63] T.R.K. Reddy, T. Ranjeth Kumar Reddy, T. Subba Rao, R. Padma Suvarna: Compos. Part B-Eng. 56 (2014) 670. DOI:10.1016/j.compositesb.2013.08.059 Search in Google Scholar

[64] M.A. Shahzad, M.F. Warsi, M.A. Khan, F. Iqbal, M. Asghar: J. Alloys. Compd. 649 (2015) 693. DOI:10.1016/j.jallcom.2015.06.096 Search in Google Scholar

[65] M. Banerjee, S. Mukherjee, S. Maitra: Cerâmica. 58 (2012) 99. DOI:10.1590/s0366-69132012000100016 Search in Google Scholar

[66] A. Saeed, B. Ruthramurthy, W.H. Yong, O.B. Hoong, T.K. Ban, Y.H. Kwang: J. Mater. Sci-Mater. EL. 26 (2015) 9859. DOI:10.1007/s10854-015-3661-4 Search in Google Scholar

[67] A.D. Kakumani, B. Ruthramurthy, H.Y. Wong, B.H. Ong, K.B. Tan, H.K. Yow: Int. J. Appl. Ceram.Tec. 13 (2015) 177. DOI:10.1111/ijac.12421 Search in Google Scholar

[68] H. Vincent, E.F. Bertaut, W.H. Baur, R.D. Shannon: Acta. Crystall. B-Stru. B32 (1976) 749. DOI:10.1107/s056774087600633x Search in Google Scholar

[69] Y-H. Lin, S. Zhang, C. Deng, Y. Zhang, X. Wang: C-W. Nan. Appl. Phys. Lett. 92 (2008) 112501. DOI:10.1063/1.2898525 Search in Google Scholar

[70] H.F. Tian, T.L. Qu, L.B. Luo, J.J. Yang, S.M. Guo, H.Y. Zhang: Appl. Phys. Lett. 92 (2008) 063507. DOI:10.1063/1.2844858 Search in Google Scholar

[71] C. Song, F. Zeng, Y.X. Shen, K.W. Geng, Y.N. Xie, Z.Y. Wu: Phys. Rev. B. 73 (2006) 17. DOI:10.1103/physrevb.73.172412 Search in Google Scholar

[72] M.J. Weber, R.F. Schaufele: Phys. Rev. (1965) A1544. DOI:10.1103/physrev.138.α1544 Search in Google Scholar

[73] M. Gaft, G. Panczer, R. Reisfeld, I. Shinno, B. Champagnon, G. Boulon.J. Lumin: 87 (2000) 1032. DOI:10.1016/s0022-2313(99)00530-x Search in Google Scholar

[74] N.J. Cockroft, G.D. Jones, D.C. Nguyen: Phys. Rev. B. 45 (1992) 5187. PMid:10000233; DOI:10.1103/physrevb.45.5187 Search in Google Scholar

[75] A. Patra, E. Sominska, S. Ramesh, Y. Koltypin, Z. Zhong, H. Minti: J. Phys. Chem. B. 103 (1999) 3361. DOI:10.1021/jp984766µ Search in Google Scholar

[76] R.F. Gonçalves, A.P. Moura, M.J. Godinho, E. Longo, M.A.C. Machado, D.A. de Castro: Ceram. Int. 41 (2015) 3549. DOI:10.1016/j.ceramint.2014.11.018 Search in Google Scholar

[77] Y. Fan, S. Yu, R. Sun, L. Li, Y. Yin, K-W. Wong: Appl. Surf. Sci. 256 (2010) 6531. DOI:10.1016/j.apsusc.2010.04.042 Search in Google Scholar

[78] P. Bomlai, N. Sirikulrat, A. Brown, E. Condliffe, S.J. Milne. J. Mater. Sci. 42 (2007) 2175. DOI:10.1007/s10853-006-1058-8 Search in Google Scholar

[79] N.J. Ali, S.J. Milne: J. Am. Ceram. Soc. 76 (1993) 2321. DOI:10.1111/j.1151-2916.1993.tb07771.x Search in Google Scholar

[80] N.G. Pamungkas, M. Dahrul, Irzaman, H. Alatas: IOP Conf. Ser. Earth Environ. Sci. 25 (2017) 012031. DOI:10.1088/1755-1315/65/1/012031 Search in Google Scholar

[81] A.K. Yadav, C.R. Gautam; Spectrosc. Lett. 48 (2015) 514. DOI:10.1080/00387010.2014.920886 Search in Google Scholar

[82] M. Hafid, S. Takeoka, S. Nishida, T. Fukami.J. Sheng: J. Appl. Phys. 38 (1999) 302. DOI:10.1143/jjap.38.302 Search in Google Scholar

[83] C. Samantaray: Mater. Lett. 58 (2004) 2299. DOI:10.1016/j.matlet.2004.03.001 Search in Google Scholar

[84] B. Li, C. Wang, W. Liu, Y. Zhong, R. An: Mater. Lett. 75 (2012) 207. DOI:10.1016/j.matlet.2012.02.035 Search in Google Scholar

[85] H. Farahani, R. Wagiran, O. Yurchenko.G.A. Urban: 2(13) (2018) 1007. DOI:10.3390/proceedings2131007 Search in Google Scholar

[86] B. Su, T.W. Button: J. Appl. Phys. 95 (2004) 1382. DOI:10.1063/1.1636263 Search in Google Scholar

[87] M. Hikam, B. Soegijono, Y. Iriani, I. Mudzakir, D. Fasquelle, L.T. Handoko: AIP Conf. Proc. 115 (2009) 1169. DOI:10.1063/1.3243245 Search in Google Scholar

[88] P. Pahuja, R.K. Kotnala, R.P. Tandon. 617 (2014) 140. J. Alloys. Compd. DOI:10.1016/j.jallcom.2014.07.204 Search in Google Scholar

[89] K.P. Jayadevan, C-Y. Liu, T-Y. Tseng: J. Am. Ceram. Soc. 88 (2005) 2456. DOI:10.1111/j.1551-2916.2005.00441.x Search in Google Scholar

[90] C. Zhang, F. Chen, Z. Ling, G. Jian, Y. Li: Mater. Sci-Poland. 35 (2018) 806. DOI:10.1515/msp-2017-0105 Search in Google Scholar

[91] O. Jongprateep, N. Sato, R. Techapiesancharoenkij, K. Surawathanawises, P. Siwayaprahm, P. Watthanarat: J. Met. Mater. Miner. 29 (2019) 3. Search in Google Scholar

[92] L. Junfang, B. Hua, Y. Wencai, L. Jingyao, L. Yahui, Z. Qing, Y. Haifeng, X. Guangcheng: Nano Res, 9 (2016) 1523. DOI:10.1007/s12274-016-1048-3 Search in Google Scholar

[93] T. Pham, P. Thuy, Z. Yan, G. Nick, K. Hamideh, P. Nguyen, D. Hoang, Z. Xuefan, Z. Dou, Z. Kechao, D. Steve, B. Chris: Iscience, 23 (2020) 101095. PMid:32387960; DOI:10.1016/j.isci.2020.101095 Search in Google Scholar

[94] T. Zeng, Y. Bai, H. Li, C. Mao, X. Dong, S. Gui: J. Inorg. Mater. 30 (2015) 1334. DOI:10.15541/jim20150245 Search in Google Scholar

[95] Y. Baowei, W. Jiang, Q. Ni, L. Enzhu, B. Dinghua: ACS Appl. Nano Mater. 1 (2018) 5119. DOI:10.1021/acsanm.8b01206 Search in Google Scholar

[96] H. Van-Quoc-Truong, P. T-Que-Phuong, S. Velusamy, D. Van-Thuan, K. Yong Soo, L. Minh-Vien: Int. J. Appl. Ceram. Tec.16 (2019) 165. DOI:10.1111/ijac.13248 Search in Google Scholar

[97] K. Ryoko, I. Tatsuya, K. Hideki, K. Akihiko: J.Phys. Chem. B 108 (2004) 8992. DOI:10.1021/jp049556p Search in Google Scholar

[98] G. Zhang, H. Hai Tao, C. Helen Lai Wah, Z. Li Min: Adv. Mat. Res. 47 (2008) 936. DOI:10.4028/www.scientific.net/AMR.47-50.936 Search in Google Scholar

[99] X. Xiaoli, C. Shijie, W. Zheng, J. Yanmin, X. Lingbo, L. Yongsheng: Nano Energy 50 (2018) 581. DOI:10.1016/j.nanoen.2018.06.005 Search in Google Scholar

[100] R.M. Piticescu, P. Vilarnho, L.M. Popescu, R.R. Piticescu: J. Eur. Ceram. Soc. 26 (2006) 2945. DOI:10.1016/j.jeurceramsoc.2006.02.010 Search in Google Scholar

[101] A.B. Catalan, S-C. Chang, R.J. Poisson, W.J. Baney, J.E. Benci: J.Mater. Res. 13 (1998) 1548. DOI:10.1557/jmr.1998.0215 Search in Google Scholar

[102] J.H. Yoo, W. Gao, K.H. Yoon: J. Mater. Sci. 34 (1999) 5361. DOI:10.1023/a:1004765426046 Search in Google Scholar

[103] A. Saha, S.B. Krupanidhi. J. Appl. Phys. 93 (2000) 3506. DOI:10.1063/1.1288018 Search in Google Scholar

[104] M.W. Cole, P.C. Joshi, M.H. Ervin: J. Appl. Phys. 89 (2001) 6336. DOI:10.1063/1.1366656 Search in Google Scholar

[105] N.V. Giridharan, R. Jayavel, P. Ramasamy: Cryst. Res. Technol. 36 (2001) 65. DOI:10.1002/1521-4079(200101) Search in Google Scholar

[106] S. Agarwal, G.L. Sharma: Sensor. Actuat. B-Chem 85 (2002) 205. DOI:10.1016/s0925-4005(02)00109-0 Search in Google Scholar

Received: 2020-11-10
Accepted: 2021-04-30
Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany