Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 8, 2021

Synthesis of Al/Cu core–shell particles through optimization of galvanic replacement method in alkaline solution

  • Rashid Ali , Fahad Ali EMAIL logo , Aqib Zahoor , Rub Nawaz Shahid , Naeem ul HaqTariq , Saad Ullah , Arshad Mahmood , Attaullah Shah and Hasan Bin Awais

Abstract

In this work, Al/Cu core–shell particles were successfully synthesized through an optimized galvanic replacement method. For this purpose, a uniform and dense copper layer was deposited on aluminum particles in an alkaline solution. The effects of four deposition factors, i. e. (i) molar ratio EDTA-2Na/CuSO4 · 5H2O, (ii) molar ratio CuCl2/Al powder, (iii) pH and (iv) temperature were systematically studied and optimized using the Taguchi orthogonal (L9) method. It was observed that molar ratio EDTA-2Na/CuSO4 · 5H2O and temperature are the most affecting factors in the deposition process. By increasing their levels, copper deposition increases within a specified time. The X-ray diffraction and scanning electron microscopy/ energy-dispersive X-ray spectroscopy results revealed the formation of homogeneous nanostructured Cu shells around Al particles. The results revealed that to achieve maximum copper deposition on Al powder; molar ratio EDTA-2Na. 2H2O/CuSO4. 5H2O, molar ratio CuCl2/Al powder, pH and temperature of the deposition bath should be 2.0, 0.05, 8.8 and 55 °C, respectively.


Prof. Dr. Fahad Ali Department of Metallurgy and Materials Engineering Pakistan Institute of Engineering and Applied Sciences (PIEAS) 45650, Islamabad Pakistan

References

[1] N.K. Bhoi, H. Singh, S. Pratap: J. Compos. Mater. 54 (2020) 813. DOI:10.1177/002199831986530710.1177/0021998319865307Search in Google Scholar

[2] J.M. Torralba, C.E. Da Costa, F. Velasco: J. Mater. Process. Technol. 133 (2003) 203. DOI:10.1016/S0924-0136(02)00234-010.1016/S0924-0136(02)00234-0Search in Google Scholar

[3] G.F. Aynalem: Adv. Mater. Sci. Eng. (2020) 1. DOI:10.1155/2020/376579110.1155/2020/3765791Search in Google Scholar

[4] C. Shao, S. Zhao, X. Wang, Y. Zhu, Z. Zhang, R.O. Ritchie: NPG Asia Mater. 11 (2019) 1. DOI:10.1038/s41427-019-0174-210.1038/s41427-019-0174-2Search in Google Scholar

[5] X. Ma, Y.F. Zhao, W.J. Tian, Z. Qian, H.W. Chen, Y.Y. Wu, X.F. Liu: Sci. Rep. 6 (2016) 1. DOI:10.1038/srep3491910.1038/srep34919Search in Google Scholar PubMed PubMed Central

[6] K. Ravi Kumar, T. Pridhar, V.S. Sree Balaji, J. Alloys Compd. 765 (2018) 171. DOI:10.1016/j.jallcom.2018.06.17710.1016/j.jallcom.2018.06.177Search in Google Scholar

[7] A.E. Nassar, E.E. Nassar: J. King Saud Univ. – Eng. Sci. 29 (2017) 295. DOI:10.1016/j.jksues.2015.11.00110.1016/j.jksues.2015.11.001Search in Google Scholar

[8] A. Fedrizzi, M. Pellizzari, M. Zadra, E. Marin: Mater. Charact. 86 (2013) 69. DOI:10.1016/j.matchar.2013.09.01210.1016/j.matchar.2013.09.012Search in Google Scholar

[9] U. Aybarc, D. Dispinar, M.O. Seydibeyoglu: Arch. Foundry Eng. 18 (2018) 5. DOI:10.24425/12249310.24425/122493Search in Google Scholar

[10] N. Ramadoss, K. Pazhanivel, G. Anbuchezhiyan: J. Mater. Res. Technol. 9 (2020) 6297. DOI:10.1016/j.jmrt.2020.03.04310.1016/j.jmrt.2020.03.043Search in Google Scholar

[11] V.P. Mahesh, P.S. Nair, T.P.D. Rajan, B.C. Pai, R.C. Hubli: J. Compos. Mater. 45 (2011) 2371. DOI:10.1177/002199831140108610.1177/0021998311401086Search in Google Scholar

[12] R.N. Shahid, S. Scudino: Sci. Rep. 8 (2018) 1. DOI:10.1038/s41598-018-24824-y10.1038/s41598-018-24824-ySearch in Google Scholar

[13] W. Wolf, L.C. Rodríguez Aliaga, D. Nagle Travessa, C.R. Moreira Afonso, C. Bolfarini, C. Shyinti Kiminami, W.J. Botta: Mater. Res. 19 (2016) 74. DOI:10.1590/1980-5373-MR-2016-008810.1590/1980-5373-MR-2016-0088Search in Google Scholar

[14] A. Farrokhi, A. Samadi, M. Asadi Asadabad, L. Amiri Talischi: Adv. Powder Technol. 26 (2015) 797. DOI:10.1016/j.apt.2015.02.00310.1016/j.apt.2015.02.003Search in Google Scholar

[15] X. Wang, Y. Feng, G. Qian, J. Zhang, Q. Zhang, F. Ding: Surf. Coatings Technol. 240 (2014) 261. DOI:10.1016/j.surfcoat.2013.12.03910.1016/j.surfcoat.2013.12.039Search in Google Scholar

[16] J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, A. Kamio: Mater. Trans. 43 (2002) 2487. DOI:10.2320/matertrans.43.248710.2320/matertrans.43.2487Search in Google Scholar

[17] L.K. Singh, A. Bhadauria, T. Laha: J. Mater. Res. Technol. 8 (2019) 503. DOI:10.1016/j.jmrt.2018.03.00510.1016/j.jmrt.2018.03.005Search in Google Scholar

[18] B. Leszczyńska-Madej, D. Garbiec, M. Madej: Vacuum. 164 (2019) 250. DOI:10.1016/j.vacuum.2019.03.03310.1016/j.vacuum.2019.03.033Search in Google Scholar

[19] J. Abenojar, F. Velasco, A. Bautista, M. Campos, J.A. Bas, J.M. Torralba: Compos. Sci. Technol. 63 (2003) 69. DOI:10.1016/S0266-3538(02)00179-310.1016/S0266-3538(02)00179-3Search in Google Scholar

[20] S.G. Qu, H.S. Lou, X.Q. Li: J. Compos. Mater. 50 (2016) 1049. DOI:10.1177/002199831558686410.1177/0021998315586864Search in Google Scholar

[21] K. Manigandan, T.S. Srivatsan, Z. Ren, J. Zhao: Adv. Compos. Aerospace, Mar. L. Appl. II, 1 (2013) 103. DOI:10.1007/978-3-319-48141-8_810.1007/978-3-319-48141-8_8Search in Google Scholar

[22] N. Demirkran, A. Künkül: Trans. Nonferrous Met. Soc. China 21 (2011) 2778. DOI:10.1016/S1003-6326(11)61123-010.1016/S1003-6326(11)61123-0Search in Google Scholar

[23] F.A.R. Rozhbiany, S.R. Jalal: Adv. Compos. Lett. 28 (2019) 1. DOI:10.1177/2633366X1989658410.1177/2633366X19896584Search in Google Scholar

[24] Y. Wang, Z. Zhang, F. Xiao: Mater. Sci. Eng. A 705 (2017) 160. DOI:10.1016/j.msea.2017.08.05110.1016/j.msea.2017.08.051Search in Google Scholar

[25] Y. Xue, R. Shen, S. Ni, M. Song, D. Xiao: J. Alloys Compd. 618 (2015) 537. DOI:10.1016/j.jallcom.2014.09.00910.1016/j.jallcom.2014.09.009Search in Google Scholar

[26] W. Wu, B. Guo, Y. Xue, R. Shen, S. Ni, M. Song: Mater. Chem. Phys. 160 (2015) 352. DOI:10.1016/j.matchemphys.2015.04.05110.1016/j.matchemphys.2015.04.051Search in Google Scholar

[27] R.T. Mousavian, S.R. Damadi, R.A. Khosroshahi, D. Brabazon, M. Mohammadpour: Int. J. Adv. Manuf. Technol. 81 (2015) 433. DOI:10.1007/s00170-015-7246-410.1007/s00170-015-7246-4Search in Google Scholar

[28] C.W. Huang, J.N. Aoh: Materials (Basel). 11 (2018) 4. DOI:10.3390/ma1104059910.3390/ma11040599Search in Google Scholar PubMed PubMed Central

[29] D. Zhang, Y. Liu, Y. Gao, J. Wang: Sci. Rep. 10 (2020) 1. DOI:10.1038/s41598-020-69105-910.1038/s41598-020-69105-9Search in Google Scholar PubMed PubMed Central

[30] C. Zhang, L. Kong, H. Li, Y. Wu: Mater. Res. Express 6 (2019) 086577. DOI:10.1088/2053-1591/ab1e1a10.1088/2053-1591/ab1e1aSearch in Google Scholar

[31] X. Zhang, Z. Xia, Y. Gao, S. Zhao: 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, (2011) 1.Search in Google Scholar

[32] Y. Wang, W. Jiang, Z. Cheng, W. Chen, C. An, X. Song, F. Li: Thermochimica Acta 463 (2007) 69. DOI:10.1016/j.tca.2007.07.01710.1016/j.tca.2007.07.017Search in Google Scholar

[33] I. Yahiaoui, F. Aissani-Benissad: Arab. J. Chem. 3 (2010) 187. DOI:10.1016/j.arabjc.2010.04.00910.1016/j.arabjc.2010.04.009Search in Google Scholar

[34] M. Nalbant, H. Gökkaya, G. Sur: Mater. Des. 28, (2007) 1379. DOI:10.1016/j.matdes.2006.01.00810.1016/j.matdes.2006.01.008Search in Google Scholar

[35] R. Muraliraja, R. Elansezhian, K. Patterson: Procedia Mater. Sci. 5 (2014) 2478. DOI:10.1016/j.mspro.2014.07.49910.1016/j.mspro.2014.07.499Search in Google Scholar

[36] A. Heidarzadeh, R. Taherzadeh Mousavian, D. Brabazon: Mater. Res. Express 5 (2018) 106515. DOI:10.1088/2053-1591/aadace10.1088/2053-1591/aadaceSearch in Google Scholar

[37] S.Il Pyun, S.M. Moon: J. Solid State Electrochem. 4 (2000) 267. DOI:10.1007/s10008005020310.1007/s100080050203Search in Google Scholar

[38] S.M. Moon, S.Il Pyun: Electrochim. Acta 44 (1999) 2445. DOI:10.1016/S0013-4686(98)00368-510.1016/S0013-4686(98)00368-5Search in Google Scholar

[39] K.R. Mamaghani, S.M. Naghib: Int. J. Electrochem. Sci. 12 (2017) 5023. DOI:10.20964/2017.06.6810.20964/2017.06.68Search in Google Scholar

[40] H.J. Chen, C. Lee: Langmuir 10 (1994) 3880. DOI:10.1021/la00022a07910.1021/la00022a079Search in Google Scholar

[41] S.G. Sobel, S. Cohen: J. Chem. Educ. 87 (2010) 616. DOI:10.1021/ed100170310.1021/ed1001703Search in Google Scholar

[42] C. Oulmas, S. Mameri, D. Boughrara, A. Kadri, J. Delhalle, Z. Mekhalif, B. Benfedd: Heliyon 5 (2019) e02058. DOI:10.1016/j.heliyon.2019.e0205810.1016/j.heliyon.2019.e02058Search in Google Scholar

[43] D.M. Soares, S. Wasle, K.G. Weil, K. Doblhofer: J. Electroanal. Chem. 532 (2002) 353. DOI:10.1016/S0022-0728(02)01050-110.1016/S0022-0728(02)01050-1Search in Google Scholar

[44] Z.P. Cheng, Y. Yang, X.D. Liu, Y.L. Tang, F.S. Li: Acta Chimica Sinica 65 (2007) 81, DOI: Corpus ID: 221171076.Search in Google Scholar

Received: 2020-11-30
Accepted: 2021-02-22
Published Online: 2021-05-08
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 2.12.2023 from https://www.degruyter.com/document/doi/10.1515/ijmr-2020-8167/html
Scroll to top button