Accessible Requires Authentication Published by De Gruyter May 8, 2021

Synthesis of Al/Cu core–shell particles through optimization of galvanic replacement method in alkaline solution

Rashid Ali, Fahad Ali, Aqib Zahoor, Rub Nawaz Shahid, Naeem ul HaqTariq, Saad Ullah, Arshad Mahmood, Attaullah Shah and Hasan Bin Awais

Abstract

In this work, Al/Cu core–shell particles were successfully synthesized through an optimized galvanic replacement method. For this purpose, a uniform and dense copper layer was deposited on aluminum particles in an alkaline solution. The effects of four deposition factors, i. e. (i) molar ratio EDTA-2Na/CuSO4 · 5H2O, (ii) molar ratio CuCl2/Al powder, (iii) pH and (iv) temperature were systematically studied and optimized using the Taguchi orthogonal (L9) method. It was observed that molar ratio EDTA-2Na/CuSO4 · 5H2O and temperature are the most affecting factors in the deposition process. By increasing their levels, copper deposition increases within a specified time. The X-ray diffraction and scanning electron microscopy/ energy-dispersive X-ray spectroscopy results revealed the formation of homogeneous nanostructured Cu shells around Al particles. The results revealed that to achieve maximum copper deposition on Al powder; molar ratio EDTA-2Na. 2H2O/CuSO4. 5H2O, molar ratio CuCl2/Al powder, pH and temperature of the deposition bath should be 2.0, 0.05, 8.8 and 55 °C, respectively.


Prof. Dr. Fahad Ali Department of Metallurgy and Materials Engineering Pakistan Institute of Engineering and Applied Sciences (PIEAS) 45650, Islamabad Pakistan

References

[1] N.K. Bhoi, H. Singh, S. Pratap: J. Compos. Mater. 54 (2020) 813. DOI:10.1177/0021998319865307 Search in Google Scholar

[2] J.M. Torralba, C.E. Da Costa, F. Velasco: J. Mater. Process. Technol. 133 (2003) 203. DOI:10.1016/S0924-0136(02)00234-0 Search in Google Scholar

[3] G.F. Aynalem: Adv. Mater. Sci. Eng. (2020) 1. DOI:10.1155/2020/3765791 Search in Google Scholar

[4] C. Shao, S. Zhao, X. Wang, Y. Zhu, Z. Zhang, R.O. Ritchie: NPG Asia Mater. 11 (2019) 1. DOI:10.1038/s41427-019-0174-2 Search in Google Scholar

[5] X. Ma, Y.F. Zhao, W.J. Tian, Z. Qian, H.W. Chen, Y.Y. Wu, X.F. Liu: Sci. Rep. 6 (2016) 1. DOI:10.1038/srep34919 Search in Google Scholar

[6] K. Ravi Kumar, T. Pridhar, V.S. Sree Balaji, J. Alloys Compd. 765 (2018) 171. DOI:10.1016/j.jallcom.2018.06.177 Search in Google Scholar

[7] A.E. Nassar, E.E. Nassar: J. King Saud Univ. – Eng. Sci. 29 (2017) 295. DOI:10.1016/j.jksues.2015.11.001 Search in Google Scholar

[8] A. Fedrizzi, M. Pellizzari, M. Zadra, E. Marin: Mater. Charact. 86 (2013) 69. DOI:10.1016/j.matchar.2013.09.012 Search in Google Scholar

[9] U. Aybarc, D. Dispinar, M.O. Seydibeyoglu: Arch. Foundry Eng. 18 (2018) 5. DOI:10.24425/122493 Search in Google Scholar

[10] N. Ramadoss, K. Pazhanivel, G. Anbuchezhiyan: J. Mater. Res. Technol. 9 (2020) 6297. DOI:10.1016/j.jmrt.2020.03.043 Search in Google Scholar

[11] V.P. Mahesh, P.S. Nair, T.P.D. Rajan, B.C. Pai, R.C. Hubli: J. Compos. Mater. 45 (2011) 2371. DOI:10.1177/0021998311401086 Search in Google Scholar

[12] R.N. Shahid, S. Scudino: Sci. Rep. 8 (2018) 1. DOI:10.1038/s41598-018-24824-y Search in Google Scholar

[13] W. Wolf, L.C. Rodríguez Aliaga, D. Nagle Travessa, C.R. Moreira Afonso, C. Bolfarini, C. Shyinti Kiminami, W.J. Botta: Mater. Res. 19 (2016) 74. DOI:10.1590/1980-5373-MR-2016-0088 Search in Google Scholar

[14] A. Farrokhi, A. Samadi, M. Asadi Asadabad, L. Amiri Talischi: Adv. Powder Technol. 26 (2015) 797. DOI:10.1016/j.apt.2015.02.003 Search in Google Scholar

[15] X. Wang, Y. Feng, G. Qian, J. Zhang, Q. Zhang, F. Ding: Surf. Coatings Technol. 240 (2014) 261. DOI:10.1016/j.surfcoat.2013.12.039 Search in Google Scholar

[16] J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, A. Kamio: Mater. Trans. 43 (2002) 2487. DOI:10.2320/matertrans.43.2487 Search in Google Scholar

[17] L.K. Singh, A. Bhadauria, T. Laha: J. Mater. Res. Technol. 8 (2019) 503. DOI:10.1016/j.jmrt.2018.03.005 Search in Google Scholar

[18] B. Leszczyńska-Madej, D. Garbiec, M. Madej: Vacuum. 164 (2019) 250. DOI:10.1016/j.vacuum.2019.03.033 Search in Google Scholar

[19] J. Abenojar, F. Velasco, A. Bautista, M. Campos, J.A. Bas, J.M. Torralba: Compos. Sci. Technol. 63 (2003) 69. DOI:10.1016/S0266-3538(02)00179-3 Search in Google Scholar

[20] S.G. Qu, H.S. Lou, X.Q. Li: J. Compos. Mater. 50 (2016) 1049. DOI:10.1177/0021998315586864 Search in Google Scholar

[21] K. Manigandan, T.S. Srivatsan, Z. Ren, J. Zhao: Adv. Compos. Aerospace, Mar. L. Appl. II, 1 (2013) 103. DOI:10.1007/978-3-319-48141-8_8 Search in Google Scholar

[22] N. Demirkran, A. Künkül: Trans. Nonferrous Met. Soc. China 21 (2011) 2778. DOI:10.1016/S1003-6326(11)61123-0 Search in Google Scholar

[23] F.A.R. Rozhbiany, S.R. Jalal: Adv. Compos. Lett. 28 (2019) 1. DOI:10.1177/2633366X19896584 Search in Google Scholar

[24] Y. Wang, Z. Zhang, F. Xiao: Mater. Sci. Eng. A 705 (2017) 160. DOI:10.1016/j.msea.2017.08.051 Search in Google Scholar

[25] Y. Xue, R. Shen, S. Ni, M. Song, D. Xiao: J. Alloys Compd. 618 (2015) 537. DOI:10.1016/j.jallcom.2014.09.009 Search in Google Scholar

[26] W. Wu, B. Guo, Y. Xue, R. Shen, S. Ni, M. Song: Mater. Chem. Phys. 160 (2015) 352. DOI:10.1016/j.matchemphys.2015.04.051 Search in Google Scholar

[27] R.T. Mousavian, S.R. Damadi, R.A. Khosroshahi, D. Brabazon, M. Mohammadpour: Int. J. Adv. Manuf. Technol. 81 (2015) 433. DOI:10.1007/s00170-015-7246-4 Search in Google Scholar

[28] C.W. Huang, J.N. Aoh: Materials (Basel). 11 (2018) 4. DOI:10.3390/ma11040599 Search in Google Scholar

[29] D. Zhang, Y. Liu, Y. Gao, J. Wang: Sci. Rep. 10 (2020) 1. DOI:10.1038/s41598-020-69105-9 Search in Google Scholar

[30] C. Zhang, L. Kong, H. Li, Y. Wu: Mater. Res. Express 6 (2019) 086577. DOI:10.1088/2053-1591/ab1e1a Search in Google Scholar

[31] X. Zhang, Z. Xia, Y. Gao, S. Zhao: 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, (2011) 1. Search in Google Scholar

[32] Y. Wang, W. Jiang, Z. Cheng, W. Chen, C. An, X. Song, F. Li: Thermochimica Acta 463 (2007) 69. DOI:10.1016/j.tca.2007.07.017 Search in Google Scholar

[33] I. Yahiaoui, F. Aissani-Benissad: Arab. J. Chem. 3 (2010) 187. DOI:10.1016/j.arabjc.2010.04.009 Search in Google Scholar

[34] M. Nalbant, H. Gökkaya, G. Sur: Mater. Des. 28, (2007) 1379. DOI:10.1016/j.matdes.2006.01.008 Search in Google Scholar

[35] R. Muraliraja, R. Elansezhian, K. Patterson: Procedia Mater. Sci. 5 (2014) 2478. DOI:10.1016/j.mspro.2014.07.499 Search in Google Scholar

[36] A. Heidarzadeh, R. Taherzadeh Mousavian, D. Brabazon: Mater. Res. Express 5 (2018) 106515. DOI:10.1088/2053-1591/aadace Search in Google Scholar

[37] S.Il Pyun, S.M. Moon: J. Solid State Electrochem. 4 (2000) 267. DOI:10.1007/s100080050203 Search in Google Scholar

[38] S.M. Moon, S.Il Pyun: Electrochim. Acta 44 (1999) 2445. DOI:10.1016/S0013-4686(98)00368-5 Search in Google Scholar

[39] K.R. Mamaghani, S.M. Naghib: Int. J. Electrochem. Sci. 12 (2017) 5023. DOI:10.20964/2017.06.68 Search in Google Scholar

[40] H.J. Chen, C. Lee: Langmuir 10 (1994) 3880. DOI:10.1021/la00022a079 Search in Google Scholar

[41] S.G. Sobel, S. Cohen: J. Chem. Educ. 87 (2010) 616. DOI:10.1021/ed1001703 Search in Google Scholar

[42] C. Oulmas, S. Mameri, D. Boughrara, A. Kadri, J. Delhalle, Z. Mekhalif, B. Benfedd: Heliyon 5 (2019) e02058. DOI:10.1016/j.heliyon.2019.e02058 Search in Google Scholar

[43] D.M. Soares, S. Wasle, K.G. Weil, K. Doblhofer: J. Electroanal. Chem. 532 (2002) 353. DOI:10.1016/S0022-0728(02)01050-1 Search in Google Scholar

[44] Z.P. Cheng, Y. Yang, X.D. Liu, Y.L. Tang, F.S. Li: Acta Chimica Sinica 65 (2007) 81, DOI: Corpus ID: 221171076. Search in Google Scholar

Received: 2020-11-30
Accepted: 2021-02-22
Published Online: 2021-05-08
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany