Accessible Unlicensed Requires Authentication Published by De Gruyter November 5, 2021

Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment

Jian Sun, Xiangcun Zhu, Zhuo Chen, Yi Li and Yonghong Zhang


Surface mechanical nano-alloying treatment (SMNAT) was employed to fabricate a nanostructured Ti coating on LZ91 Mg–Li alloy. Microstructure, surface hardness and in-vitro biocompatibility of the Ti-coated sample were investigated in comparison with those of an untreated sample. Experimental results showed that a nanostructured Ti coating with a thickness of 35 to 60 μm was formed after SMNAT for 2 h. The average grain size in the top surface of the Ti coating was about 30 nm. The surface of the Ti coating is rougher than that of the untreated LZ91 sample, in which the values of Ra, Rq and Rz were 7.83, 9.57 and 14.85 μm, respectively. The hardness of the Ti coating top surface was about 483 HV. Cell proliferation and differentiation on Ti coated samples were enhanced relative to those on the untreated samples.

Professor Dr. Jian Sun Department of Materials Science and Engineering HeFei University of Technology Hefei Anhui, 230009 P. R. China Tel.: +86 551 62904557 Fax: +86 551 62904557
Professor Dr. Yonghong Zhang The first affiliated Hospital of Anhui Medical University Anhui Medical University Hefei Anhui, 230009 P. R. China Tel.: +86 551 62904557 Fax: +86 551 62904557

Funding statement: This work was financially supported by the National Natural Science Foundation of China (51701057), the Fundamental Research Funds for the Central Universities (JZ2018HGTB0265), the Fund of Anhui Kelante Co., Ltd (W2020JSKF0061), the Industrial Guiding Fund of Changfeng County and Hefei University of Technology (JZ2019QTXM0281), and the Fund of Anhui Wanan Co., Ltd (W2019JSKF0210).


[1] D. Zhang, Y. Liu, Z.G. Liu: Coatings. 10 (2020) 828. DOI:10.3390/coatings1009082810.3390/coatings10090828Search in Google Scholar

[2] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal: Mater. Sci. Eng. C. 68 (2016) 948. PMid:27524097; DOI:10.1016/j.msec.2016.06.02010.1016/j.msec.2016.06.020Search in Google Scholar

[3] Y. Liu, Y.H. Wu, D. Bian, S. Gao, S. Leeflang: Acta Biomater. 62 (2017) 418. PMid:28823717; DOI:10.1016/j.actbio.2017.08.02110.1016/j.actbio.2017.08.021Search in Google Scholar

[4] W.R. Zhou, Y.F. Zheng, M.A. Leeflang, J. Zhou: Acta Biomater. 9 (2013) 8488. DOI:10.1016/j.actbio.2013.01.03210.1016/j.actbio.2013.01.032Search in Google Scholar

[5] J.Y. Wu, D.L. Zhao, B. Lee.A. Roy, R. Yao, S. Chen, Z.Y. Dong, W.R. Heineman, P.N. Kumta: ACS Biomater. Sci. Eng. 9 (2020) 1950. PMid:33455316; DOI:10.1021/acsbiomaterials.9b0159110.1021/acsbiomaterials.9b01591Search in Google Scholar

[6] R. Maurya, A.R. Siddiqui, P.K. Katiyar, K Balani: J. Mater. Sci. Technol. 35 (2019) 1767. DOI:10.1016/j.jmst.2019.03.02810.1016/j.jmst.2019.03.028Search in Google Scholar

[7] T. Mineta, H. Sato: Mater. Sci. Eng. A. 735 (2018) 418. DOI:10.1016/j.msea.2018.08.07710.1016/j.msea.2018.08.077Search in Google Scholar

[8] Niinomi. M. Mater. Trans. 49 (2008) 2170. DOI:10.2320/matertrans.L-MRA200882810.2320/matertrans.L-MRA2008828Search in Google Scholar

[9] S. Ali, A.M.A. Rani, Z. Baig: Corros. Rev. 5 (2020) 381. DOI:10.1515/corrrev-2020-000110.1515/corrrev-2020-0001Search in Google Scholar

[10] R. Pouriamanesh, J. Vahdati-Khaki, Q. Mohammadib: J. Alloys Comp. 488 (2009) 430. DOI:10.1016/j.jallcom.2009.08.15010.1016/j.jallcom.2009.08.150Search in Google Scholar

[11] E. Zhang, L.P. Xu, Y. Ke: Scr. Mater. 53 (2005) 523. DOI:10.1016/j.scriptamat.2005.05.00910.1016/j.scriptamat.2005.05.009Search in Google Scholar

[12] G.S. Wu, K.J. Ding, X.Q. Zeng, X.M. Wang, S.S. Yao: Scr. Mater. 61 (2009) 269. DOI:10.1016/j.scriptamat.2009.03.06110.1016/j.scriptamat.2009.03.061Search in Google Scholar

[13] L.Y. Mei, J. Sun.Y. Li, Y.Y. Lei, X.D. Du, Y.C. Wu: Appl. Surf. Sci. 499 (2020) 143915. DOI:10.1016/j.apsusc.2019.14391510.1016/j.apsusc.2019.143915Search in Google Scholar

[14] J. Sun, Q.T. Yao: Coatings. 6 (2016) 63. DOI:10.3390/coatings604006310.3390/coatings6040063Search in Google Scholar

[15] Q.T. Yao, J. Sun, Y.J. Zhu, W.P. Tong: Surf. Eng. 35 (2019) 927. DOI:10.1080/02670844.2018.155473810.1080/02670844.2018.1554738Search in Google Scholar

[16] J.N. Sahu, C. Sasikumar: J. Mater. Sci. Technol. 263 (2019) 285. DOI:10.1016/j.jmatprotec.2018.08.02710.1016/j.jmatprotec.2018.08.027Search in Google Scholar

[17] F. Saba, E. Kabiri, J.V. Khaki, M.H. Sabzevar: Powder Technol. 288 (2016) 76. DOI:10.3139/146.10137510.3139/146.101375Search in Google Scholar

[18] T. Varol, A. Canakci: Philos. Mag. Lett. 93 (2013) 339. DOI:10.1080/09500839.2013.77975810.1080/09500839.2013.779758Search in Google Scholar

[19] A. Canakci, F. Erdemir, T. Varol, S. Ozkaya: Powder Technol. 247 (2013) 24. DOI:10.1016/j.powtec.2013.07.00210.1016/j.powtec.2013.07.002Search in Google Scholar

[20] M. Zuo, D.G. Zhao, Z.Q. Wang, H.R. Geng: Mater. Sci. Technol. 31 (2014) 1051. DOI:10.1179/1743284714Y.000000066410.1179/1743284714Y.0000000664Search in Google Scholar

[21] W.S. Chuang, Y.C. Cai, J.C. Huang, W.Y. Tsai: Surf. Coat. Technol. 340 (2018) 145. DOI:10.1016/j.surfcoat.2018.02.06110.1016/j.surfcoat.2018.02.061Search in Google Scholar

[22] D. Fabijanic, A. Taylor, K. Ralston: Corrosion. 69 (2012) 527. DOI:10.5006/076310.5006/0763Search in Google Scholar

[23] V.Y. Zadorozhnyy, A. Shahzad, M.D. Pavlov, D. Kozak: J. Alloys Compd. 707 (2017) 351. DOI:10.1016/j.jallcom.2016.11.18910.1016/j.jallcom.2016.11.189Search in Google Scholar

[24] C.L. Chen, Suprianto: Surf. Coat. Technol. 386 (2020) 125443. DOI:10.1016/j.surfcoat.2020.12544310.1016/j.surfcoat.2020.125443Search in Google Scholar

[25] A. Canakci, F. Erdemir, T. Varol, R. Dalmış, S. Ozkaya: Powder. Technol. 268 (2014) 110. DOI:10.1016/j.powtec.2014.08.03410.1016/j.powtec.2014.08.034Search in Google Scholar

[26] K. Chen, H.M. Yang, J.S. Gao, Y. Yang: Mater. Charact. 135 (2018) 265. DOI:10.1016/j.matchar.2017.11.05110.1016/j.matchar.2017.11.051Search in Google Scholar

[27] C. Chen, X.M. Feng, Y.F. Shen: J. Alloys Compd. 813 (2020) 152223. DOI:10.1016/j.jallcom.2019.15222310.1016/j.jallcom.2019.152223Search in Google Scholar

[28] C. Chen, X.M. Feng, Y.F. Shen: J. Alloys Compd. 708 (2017) 639. DOI:10.1016/j.jallcom.2017.03.08210.1016/j.jallcom.2017.03.082Search in Google Scholar

[29] Z. Gawroński: Surf. Coat. Technol. 124 (2000) 19. DOI:10.1016/S0257-8972(99)00620-910.1016/S0257-8972(99)00620-9Search in Google Scholar

[30] Y. Li, X.C. Zhu, J. Sun, Q.T. Yao, X.D. Du, Y.C. Wu: Surf. Eng. 2020. DOI:10.1080/02670844.2020.184069310.1080/02670844.2020.1840693Search in Google Scholar

[31] L.S. Qiu, X.D. Zhu, K.W. Xu: Surf. Coat. Technol. 332 (2007) 267. in Google Scholar

[32] Q.Z. Chen, G.A. Thouas: Mater. Sci. Eng. R Rep. 87 (2015) 1. DOI:10.1016/j.mser.2014.10.00110.1016/j.mser.2014.10.001Search in Google Scholar

[33] J.W. Lu, Y. Zhang, W.T. Huo: Appl. Surf. Sci. 434 (2018) 63. DOI:10.1016/j.apsusc.2017.10.16810.1016/j.apsusc.2017.10.168Search in Google Scholar

[34] A. Günay-Bulutsuz, Ö. Berrak, H. Aygül-Yeprem, E.D. Arisan, M.E. Yurcia: Mater. Sci. Eng. C. 91 (2018) 382. PMid:30033268; DOI:10.1016/j.msec.2018.05.05610.1016/j.msec.2018.05.056Search in Google Scholar

[35] Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, R. Boyd: Acta Biomater. 7 (2011) 900. PMid:20887818; DOI:10.1016/j.actbio.2010.09.03310.1016/j.actbio.2010.09.033Search in Google Scholar

[36] J.T. Davies, J. Lam, P.E. Tomlins: Biomed. Mater. 5 (2010) 015002. PMid:20057015; DOI:10.1088/1748-6041/5/1/01500210.1088/1748-6041/5/1/015002Search in Google Scholar

Received: 2021-01-03
Accepted: 2021-07-20
Published Online: 2021-11-05

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany