Accessible Requires Authentication Published by De Gruyter June 29, 2021

The effect of homogenization on microstructure and hardness of a large-scale high-aluminum Al4.4Co26Cr18Fe18Ni26Ti5.5 Compositionally Complex Alloy cast

Florian Biermair and Gerald Ressel


As any largescale cast material, specific Compositionally Complex Alloys or High Entropy Superalloys contain segregations, leading to unideal, inhomogeneous properties. This work presents the effects of a homogenization heat treatment at 1 150°C for 6 h of a large-scale cast Al4.4Co26Cr18Fe18Ni26Ti5.5 alloy. In order to reveal these effects, homogenized specimens were analyzed and compared to the as-cast state with regard to chemical homogeneity as well as the homogeneity of elemental solution by means of scanning electron microscopy, energy dispersive X-ray spectroscopy as well as X-ray diffraction and hardness measurements. Despite the increased Al content, intermetallic phases and segregations, observable in the as-cast state, dissolve during homogenization. Improved, but not full homogeneity of elemental distribution after annealing can be determined. The improved state of solution and homogeneity agrees with the increasing lattice parameter from 3.572 Å to 3.594 Å and the decreasing hardness from 320.3 HV10 to 245.2 HV10 during homogenization.

Florian Biermair, MSc Materials Center Leoben Forschung GmbH Roseggerstraße 12 Leoben 8700 Austria Tel.: +43 384245922556 Web:

Funding statement: This manuscript is a result of the project with the short title “HEADesign" with FFG ProjectNumber 864865. This project is funded by resources of the Austrian ministry for traffic, innovation and technology, BMVIT, and carried out in the frame of the program production of the future (“Produktion der Zukunft"). The authors acknowledge the financial support of voestalpine BÖHLER Edelstahl GmbH & Co KG, voestalpine BÖHLER Aerospace GmbH & Co KG and RHPTechnology GmbH, as well as the support of COMTES FHT a.s., for the implementation of the casting process.

  1. Conflict of Interest

    On behalf of all authors, the corresponding author states that there is no conflict of interest.


[1] S. Gorsse, M.H. Nguyen, O.N. Senkov, D.B. Miracle: Data Br. 21 (2018) 2664. PMid:30761350; DOI:10.1016/j.dib.2018.11.111 Search in Google Scholar

[2] M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang: High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing AG Switzerland, Cham (2016). DOI:10.1007/978-3-319-27013-5 Search in Google Scholar

[3] B.S. Murty, J.W. Yeh, S. Ranganathan: High-Entropy Alloys, Butterworth-Heinemann, London (2014). DOI:10.1016/C2013-0-14235-3 Search in Google Scholar

[4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang: Adv. Eng. Mater. 6 (2004) 299. DOI:10.1002/adem.200300567 Search in Google Scholar

[5] J.-W. Yeh: Eur. J. Control 31 (2006) 633. DOI:10.3166/acsm.31.633-648 Search in Google Scholar

[6] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu: J. Alloys Compd. 760 (2018) 15. DOI:10.1016/j.jallcom.2018.05.067 Search in Google Scholar

[7] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent: Mater. Sci. Eng. A 375–377 (2004) 213. DOI:10.1016/j.msea.2003.10.257 Search in Google Scholar

[8] A. Gali, E.P. George: Intermetallics 39 (2013) 74. DOI:10.1016/j.intermet.2013.03.018 Search in Google Scholar

[9] M.J. Jang, S. Praveen, H.J. Sung, J.W. Bae, J. Moon, H.S. Kim: J. Alloys Compd. 730 (2018) 242. DOI:10.1016/j.jallcom.2017.09.293 Search in Google Scholar

[10] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George: Acta Mater. 61 (2013) 5743. DOI:10.1016/j.actamat.2013.06.018 Search in Google Scholar

[11] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter: Acta Mater. 96 (2015) 258. DOI:10.1016/j.actamat.2015.06.025 Search in Google Scholar

[12] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George: Acta Mater. 112 (2016) 40. DOI:10.1016/j.actamat.2016.04.005 Search in Google Scholar

[13] H.M. Daoud, A.M. Manzoni, N. Wanderka, U. Glatzel: JOM 67 (2015) 2271. DOI:10.1007/s11837-015-1484-7 Search in Google Scholar

[14] D. Chen, F. He, B. Han, Q. Wu, Y. Tong, Y. Zhao, Z. Wang, J. Wang, J. jung Kai: Intermetallics 110 (2019) 106476. DOI:10.1016/j.intermet.2019.106476 Search in Google Scholar

[15] Y.T. Chen, Y.J. Chang, H. Murakami, S. Gorsse, A.C. Yeh: Scr. Mater. 187 (2020) 177. DOI:10.1016/j.scriptamat.2020.06.002 Search in Google Scholar

[16] A.M. Manzoni, S. Haas, J.M. Yu, H.M. Daoud, U. Glatzel, H. Aboulfadl, F. Mücklich, R. Duran, G. Schmitz, D.M. Többens, S. Matsumura, F. Vogel, N. Wanderka: Mater. Charact. 154 (2019) 363. DOI:10.1016/j.matchar.2019.06.009 Search in Google Scholar

[17] A.C. Yeh, T.K. Tsao, Y.J. Chang, K.C. Chang, J.W. Yeh, M.S. Chiou, S.R. Jian, C.M. Kuo, W.R. Wang, H. Murakami: Int. J. Metall. Mater. Eng. 1 (2015) 1. DOI:10.15344/2455-2372/2015/107 Search in Google Scholar

[18] T.K. Tsao, A.C. Yeh, C.M. Kuo, H. Murakami: Adv. Eng. Mater. 19 (2017) 1. DOI:10.1002/adem.201600475 Search in Google Scholar

[19] A.M. Manzoni, S. Singh, H.M. Daoud, R. Popp, R. Völkl, U. Glatzel, N. Wanderka: Entropy 18 (2016) 104. DOI:10.3390/e18040104 Search in Google Scholar

[20] T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C.T. Liu: Acta Mater. 189 (2020) 47. DOI:10.1016/j.actamat.2020.02.059 Search in Google Scholar

[21] Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai: Acta Mater. 188 (2020) 517. DOI:10.1016/j.actamat.2020.02.028 Search in Google Scholar

[22] Y.J. Chang, A.C. Yeh: J. Alloys Compd. 653 (2015) 379. DOI:10.1016/j.jallcom.2015.09.042 Search in Google Scholar

[23] Y.J. Chang, A.C. Yeh: Mater. Chem. Phys. 210 (2018) 111. DOI:10.1016/j.matchemphys.2017.09.057 Search in Google Scholar

[24] B.C. Hu, Y.J. Chang, A.C. Yeh, Y. Ju: Procedia Manuf. 15 (2018) 364. DOI:10.1016/j.promfg.2018.07.231 Search in Google Scholar

[25] K. Ming, X. Bi, J. Wang: Int. J. Plast. 100 (2018) 177. DOI:10.1016/j.ijplas.2017.10.005 Search in Google Scholar

[26] C.M. Kuo, C.W. Tsai: Mater. Chem. Phys. 210 (2018) 103. DOI:10.1016/j.matchemphys.2017.10.064 Search in Google Scholar

[27] R.C. Reed: The Superalloys, 1st ed. Cambridge University Press, Cambridge (2006). DOI:10.1017/CBO9780511541285 Search in Google Scholar

[28] G. Gottstein: Physikalische Grundlagen der Materialkunde, 3rd ed. Springer-Verlag Berlin Heidelberg, Berlin Heidelberg (2007). DOI:10.1007/978-3-540-71105-6 Search in Google Scholar

[29] Q. Feng, T.K. Nandy, T.M. Pollock: Scr. Mater. 50 (2004) 849. DOI:10.1016/j.scriptamat.2003.12.013 Search in Google Scholar

[30] Z.J. Miao, A.D. Shan, Y.B. Wu, J. Lu, W.L. Xu, H.W. Song: Trans. Nonferrous Met. Soc. China 21 (2011) 1009. DOI:10.1016/S1003-6326(11)60814-5 Search in Google Scholar

[31] G. Sauthoff: Intermetallics, VCH Verlagsgesellschaft mbH, Weinheim (1995). DOI:10.1002/9783527615414 Search in Google Scholar

[32] T.M. Butler, M.L. Weaver: J. Alloys Compd. 674 (2016) 229. DOI:10.1016/j.jallcom.2016.02.257 Search in Google Scholar

[33] Landolt-Börnstein: (2012). DOI:10.1007/978-3-540-88142-1_43 Search in Google Scholar

[34] Landolt-Börnstein: (1998). DOI:10.1007/10551312_2665 Search in Google Scholar

[35] Landolt-Börnstein: (2012). DOI:10.1007/978-3-540-88142-1_8 Search in Google Scholar

[36] D.J. Dyson, B. Holmes: J. Iron Steel Inst., London 208 (1970) 469. Search in Google Scholar

[37] P. Caron: High γ’ Solvus New Generation Nickel-Based Superalloys for Single Crystal Turbine Blade Applications, in: T.M. Pollock (Ed.), Superalloys, 2000, TMS, Warrendale, USA (2000): pp. 737–746. DOI:10.7449/2000/superalloys_2000_737_746 Search in Google Scholar

[38] E.O. Hall: Proc. Phys. Soc., London, Sect. B 64 (1951) 747. DOI:10.1088/0370-1301/64/9/303 Search in Google Scholar

Received: 2021-01-26
Accepted: 2021-04-14
Published Online: 2021-06-29
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany