Accessible Requires Authentication Published by De Gruyter August 18, 2021

Theoretical investigations on correlations between elastic behavior of Al-based alloys and their electronic structures

Wen Liu, Chi Zhang, Chunge Wang, Xiang Yan, Xiaoxiong Hu, Pingjun Xu, Xinyu Ye, Zhongzhu Zhuang, Pengfei Liu and Shuyu Lei


In this work, using the first-principles method, the alloying stability, electronic structure, and elastic properties of Al-based intermetallics were investigated. It was found that these alloys have a strong alloying ability and structural stability due to the negative formation energies and the cohesive energies. The valence bonds of these intermetallic compounds are attributed to the valence electrons of Cu 3δ states for AlCu3, Cu 3δ and Zr 4δ states for AlCu2Zr, and Al 3s, Zr 5s and 4δ states for AlZr3, respectively. Furthermore, the correlation between elastic properties of these intermetallic compounds and their electronic structures was revealed. The results show that structural parameters and elastic properties such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and anisotropy agreed well with experimental results.

Dr. Wen Liu School of Information and Intelligent Engineering Zhejiang Wanli University Ningbo 315100 P. R. China

Funding statement: This research was funded by Emergency tackling of "key core technology" in Ningbo (grant number: 2020G024 and 2020G012), Ningbo Science and technology innovation 2025 major special project (grant number: 2020Z115, 202002P2004 and 2020Z077), the Public Welfare Technology Research Program of Zhejiang Provincial (grant number: LGG20E050004).


[1] G. Sauthoff, in: J.H. Westbrook, R.L. Fleischer (Eds.) Intermetallic compounds, Vol. 1, Wiley, New York (1994) 991. Search in Google Scholar

[2] R.W. Cahn: Intermetallics. 6 (1998) 563. DOI:10.1016/S0966-9795(98)00027-2 Search in Google Scholar

[3] P.K. Rajagopalan, I.G. Sharma, T.S. Krishnan: J. Alloys Compd. 285 (1999) 212. DOI:10.1016/S0925-8388(98)00754-3 Search in Google Scholar

[4] P. Wonwook: Mater. Des. 17 (1996) 85. DOI: 130.5616/LD40925–858(°)046754–34. DOI:10.1016/S0261-3069(96)00037-4 Search in Google Scholar

[5] W. Zhou, L.J. Liu, B.L. Li, Q.G. Song, P. Wu: J. Electron. Mater. 38 (2009) 356. DOI:10.1007/s11664-008-0587-0 Search in Google Scholar

[6] E. Clouet, J.M. Sanchez: Phys. Rev. B. 65 (2002) 094105. DOI:10.1103/PhysRevB.65.094105 Search in Google Scholar

[7] G. Ghosh, M. Asta: Acta Mater. 53 (2005) 3225. DOI:10.1016/j.actamat.2005.03.028 Search in Google Scholar

[8] G. Ghosh: Acta Mater. 55 (2007) 3347. DOI:10.1016/j.actamat.2007.01.037 Search in Google Scholar

[9] W.J. Ma, Y.R. Wang, B.C. Wei, Y.F. Sun: Trans. Nonferrous Met. Soc. China. 17 (2007) 929. DOI:10.1016/S1003-6326(07)60202-7 Search in Google Scholar

[10] X.G. Min, Y.S. Sun, F. Xue, W.W. Du, D.Y. Wu: Mater. Chem. Phys. 78 (2003) 88. DOI:10.1016/S0254-0584(02)00312-7 Search in Google Scholar

[11] M. Bouharkat, A. Bentoua, R. Mebsout: Computational Condensed Matter. 24 (2020) e00487. DOI:10.1016/j.cocom.2020.e00487 Search in Google Scholar

[12] M. Bouharkat, R. Mebsout, E.K. Hlil, H. Lassria: J. Magn. Magn. Mater. 518 (2021) 167362. DOI:10.1016/j.jmmm.2020.167362 Search in Google Scholar

[13] S. Pauly, J. Das, N. Mattern, D.H. Kim, J. Eckert: Intermetallics 17 (2009) 453. DOI:10.1016/j.intermet.2008.12.003 Search in Google Scholar

[14] H. Baltache, R. Khenata, M. Sahnoun, M. Driz, B. Abbar, B. Bouhafs: Phys. B. 344 (2004) 334. DOI:10.1016/j.physb.2003.09.274 Search in Google Scholar

[15] G. Kresse, J. Hafner: Phys. Rev. B. 49 (1994) 14251. PMid:10010505; DOI:10.1103/PhysRevB.49.14251 Search in Google Scholar

[16] G. Kresse, J. Furthmüller: Phys. Rev. B. 54 (1996) 11169. PMid:9984901; DOI:10.1103/PhysRevB.54.11169 Search in Google Scholar

[17] W. Kohn, L.J. Sham: Phys. Rev. 140 (1965) A1133. DOI:10.1103/PhysRev.140.A1133 Search in Google Scholar

[18] J.P. Perdew, Y. Wang: Phys. Rev. B. 45 (1992) 13244. PMid:10001404; DOI:10.1103/PhysRevB.45.13244 Search in Google Scholar

[19] P.E. Blöchl: Phys. Rev. B. 50 (1994) 17953. PMid:9976227; DOI:10.1103/PhysRevB.50.17953 Search in Google Scholar

[20] H.J. Monkhorst, J.D. Pack: Phys. Rev. B. 13 (1976) 5188. DOI:10.1103/PhysRevB.13.5188 Search in Google Scholar

[21] P.E. Blöchl, O. Jepsen, O.K. Andersen: Phys. Rev. B. 49 (1994) 16223. PMid:10010769; DOI:10.1103/PhysRevB.49.16223 Search in Google Scholar

[22] M. Draissia, M.Y. Debili, N. Boukhris, M. Zadam, S. Lallouche: Copper. 10 (2007) 65. DOI:10.1002/° Search in Google Scholar

[23] W.J. Meng, J. Faber Jr, P.R. Okamoto, L.E. Rehn, B.J. Kestel, R.L. Hitterman: J. Appl. Phys. 67 (1990) 1312. DOI:10.1063/1.345683 Search in Google Scholar

[24] R.M. Zu Reckendorf, P.C. Schmidt, A. Weiss: Z Phys. Chem. 163 (1989) 103. DOI:10.1524/zpch.1989.163.Part_1.0103 Search in Google Scholar

[25] Y.B. Shi, L.F. Bai, J. Gong, X. Ju: Struct. Chem. 31 (2020) 647. DOI:10.1007/s11224-019-01447-1 Search in Google Scholar

[26] V.I. Zubov, N.P. Tretiakov, J.N. Teixeira Rabelo: Phys. Lett. A. 194 (1994) 223. DOI:10.1016/0375-9601(94)91288-2 Search in Google Scholar

[27] W.Y. Yu, N. Wang, X.B. Xiao, B.Y. Tang, L.M. Peng, W.J. Ding: Solid State Sci. 11 (2009) 1400. DOI:10.1016/j.solidstatesciences.2009.04.017 Search in Google Scholar

[28] B.Y. Tang, N. Wang, W.Y. Yu, X.Q. Zeng, W.J. Ding: Acta Mater. 56 (2008) 3353. DOI:10.1016/j.actamat.2008.03.014 Search in Google Scholar

[29] M. Mattesini, R. Ahuja, B. Johansson: Phys. Rev. B. 68 (2003) 184108. DOI:10.1103/PhysRevB.68.184108 Search in Google Scholar

[30] J.D. Eshelby: Progress in Solid Mechanics, Vol. II, North-Holland, Amsterdam (1961) 87. DOI:10.1016/0022-5096(61)90040-0 Search in Google Scholar

[31] H.M. Ledbetter: J Appl. Phys. 44 (1973) 1451. DOI:10.1063/1.1662392 Search in Google Scholar

[32] S.F. Pugh: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science Series 7. 45 (1954) 823. DOI:10.1080/14786440808520496 Search in Google Scholar

Received: 2021-02-06
Accepted: 2021-05-18
Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany