Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 5, 2021

Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys

Jimei Niu EMAIL logo and Zhigang Zheng


(Mn,Fe)2(P,Si)-basedmaterials are promisingly applied in the room-temperature magnetic refrigeration field. In this study, Mn1.25Fe0.7P0.5Si0.5Cx (x = 0, 0.01, 0.03 and 0.05) alloys were prepared by arc-melting and then a two-stage sintering process. The effects of C doping on the crystal structure and magnetocaloric behavior are discussed. Results indicate that the Fe2P-type structure (space group of P62 m) was crystallized for all samples with weakened first-order magnetic transitions (FOMT). The Curie temperature could be altered from 223.5 K to 278.5 K with the large magnetocaloric effect (MCE) remaining by C doping. In the applied magnetic field of 5 T, the peak value of magnetic entropy change (–ΔSM) increased by 7.3% to reach 25.1 J × kg–1 × K–1. The temperature-induced entropy change (ΔSDSC) derived from DSC was slightly larger than ΔSM induced by the magnetic field. The Mn1.25Fe0.7P0.5Si0.5 alloys with large MCE can be effectively tuned by C doping because C atoms prefered to share the substitute and occupy the interstitial sites in hexagonal Fe2P-type structure.

Ms Jimei Niu Guangzhou College of South China University of Technology Guangzhou, 510800 P. R. China Tel.: +86 (020)36903405

Funding statement: This work was supported by Characteristic innovation projects of Guangdong Province (No. 2020 KTSCX203), and Yunfu Municipal Science and Technology Program (No. 2020A090103), Guangdong Provincial Science and Technology Program (Grant No. 2020A1414010135), Natural Science Foundation of Guangdong Province (No. 2020A1515010736, 2021A1515010451).


[1] B. Yu, M. Liu, P.W. Egolf, A. Kitanovski: Int. J. Refrig. 33 (2010) 1029 –1060. DOI:10.1016/j.ijrefrig.2010.04.00210.1016/j.ijrefrig.2010.04.002Search in Google Scholar

[2] E. Brück: J. Phys. D Appl. Phys. 38 (2005) R381. DOI:10.1088/0022–3727/38/23/R0110.1088/0022–3727/38/23/R01Search in Google Scholar

[3] K.A. Gschneidnerjr, V.K. Pecharsky, A.O. Tsokol: Rep. Prog. Phys. 68 (2005) 1479 –1539. DOI:10.1088/0034–4885/68/6/R0410.1088/0034–4885/68/6/R04Search in Google Scholar

[4] B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen: Int. J. Refrig. 26 (2003) 622–636. DOI:10.1016/S0140–7007(03)00048–310.1016/S0140–7007(03)00048–3Search in Google Scholar

[5] V.K. Pecharsky, K.A. Gschneidner: Phys. Rev. Lett. 23 (1997) 4494 –4497. DOI:10.1103/PhysRevLett.78.449410.1103/PhysRevLett.78.4494Search in Google Scholar

[6] H. Wada, Y. Tanabe: Appl. Phys. Lett. 20 (2001) 3302 –3304. DOI:10.1063/1.141904810.1063/1.1419048Search in Google Scholar

[7] F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang: Appl. Phys. Lett. 23 (2001) 3675 –3677. DOI:10.1063/1.137583610.1063/1.1375836Search in Google Scholar

[8] A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi: Phys. Rev. B 67 (2003) 104416. DOI:10.1103/PhysRevB.67.10441610.1103/PhysRevB.67.104416Search in Google Scholar

[9] J. Liu, M. Krautz, K. Skokov, T.G. Woodcock, O. Gutfleisch: Acta Mater. 9 (2011) 3602–3611. DOI:10.1016/j.actamat.2011.02.03310.1016/j.actamat.2011.02.033Search in Google Scholar

[10] O. Tegus, E. Brück, K.H.J. Buschow, F.R. De Boer: Nature 415 (2002) 150–152. PMid:11805828; DOI:10.1038/415150a10.1038/415150aSearch in Google Scholar PubMed

[11] N.T. Trung, Z.Q. Ou, T.J. Gortenmulder, O. Tegus, K.H.J. Buschow, E. Brück: Appl. Phys. Lett. 94 (2009) 102513. DOI:10.1063/1.309559710.1063/1.3095597Search in Google Scholar

[12] D.T. Cam Thanh, E. Brück, N.T. Trung, J.C.P. Klaasse, K.H.J. Buschow, Z.Q. Ou, O. Tegus, L. Caron: J. Appl. Phys. 103 (2008) 07B318. DOI:10.1063/1.283695810.1063/1.2836958Search in Google Scholar

[13] F. Guillou, G. Porcari, H. Yibole, N.H. van Dijk, E. Brück: Adv. Mater. 17 (2014) 2671 –2675. PMid:24677518; DOI:10.1002/adma.20130478810.1002/adma.201304788Search in Google Scholar

[14] H.Y. Yu, Z.R. Zhu, J.W. Lai, Z.G. Zheng, D.C. Zeng, J.L. Zhang: J. Alloys Compd. 649 (2015) 1043 –1047. DOI:10.1016/j.jallcom.2015.07.14110.1016/j.jallcom.2015.07.141Search in Google Scholar

[15] F.X. Hu, B.G. Shen, J.R. Sun, G.H. Wu: Phys. Rev. B 64 (2001) 419–427. DOI:10.1103/PhysRevB.64.13241210.1103/PhysRevB.64.132412Search in Google Scholar

[16] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida: Nature 439 (2006) 957–960. PMid:16495995; DOI:10.1038/nature0449310.1038/nature04493Search in Google Scholar

[17] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch: Nat. Mater. 11 (2012) 620–626. PMid:22635044; DOI:10.1038/nmat333410.1038/nmat3334Search in Google Scholar

[18] M.P. Annaorazov, K.A. Asatryan, G. Myalikgulyev, S.A. Nikitin, A.M. Tishin, A.L. Tyurin: Cryogenics 32 (1992) 867 –872. DOI:10.1016/0011–2275(92)90352-B10.1016/0011–2275(92)90352-BSearch in Google Scholar

[19] F. Guillou, H. Yibole, G. Porcari, E. Brück: Phys. Status Solidi C 11 (2014) 1007–1010. DOI:10.1002/pssc.20130056910.1002/pssc.201300569Search in Google Scholar

[20] F. Guillou, H. Yibole, N.H. van Dijk, E. Brück: J. Alloys Compd. 632 (2015) 717–722. DOI:10.1016/j.jallcom.2015.01.30810.1016/j.jallcom.2015.01.308Search in Google Scholar

[21] N.V. Thang, X.F. Miao, N.H. van Dijk, E. Brück: J. Alloys Compd. 670 (2016) 123 –127. DOI:10.1016/j.jallcom.2016.02.01410.1016/j.jallcom.2016.02.014Search in Google Scholar

[22] X.F. Miao, N.V. Thang, L. Caron, H. Yibole, R.I. Smith, N.H. van Dijk, E. Brück: Scr. Mater. 124 (2016) 129–132. DOI:10.1016/j.scriptamat.2016.07.01510.1016/j.scriptamat.2016.07.015Search in Google Scholar

[23] N.V. Thang, N.H. van Dijk, E. Brück: Materials 10 (2016) 14. PMid:28772373; DOI:10.3390/ma1001001410.3390/ma10010014Search in Google Scholar PubMed PubMed Central

[24] Z.Q. Ou, L. Zhang, N.H. Dung, L. van Eijck, A.M. Mulders, M. Avdeev, N.H. van Dijk, E. Brück: J. Magn. Magn. Mater. 340 (2013) 80–85. DOI:10.1016/j.jmmm.2013.03.02810.1016/j.jmmm.2013.03.028Search in Google Scholar

[25] M. Yue, Z.Q. Li, X.L. Wang, D.M. Liu, J.X. Zhang, X.B. Liu: J. Appl. Phys. 105 (2009) 07A915. DOI:10.1063/1.305615710.1063/1.3056157Search in Google Scholar

[26] N.V. Thang, H. Yibole, N.H. van Dijk, E. Brück: J. Alloys Compd. 699 (2017) 633 –637. DOI:10.1016/j.jallcom.2016.12.40210.1016/j.jallcom.2016.12.402Search in Google Scholar

[27] X.F. Miao, L. Caron, P. Roy, N.H. Dung, L. Zhang, W.A. Kockelmann, R.A. De Groot, N.H. van Dijk, E. Brück: Phys. Rev. B 89 (2014) 174429. DOI:10.1103/PhysRevB.89.17442910.1103/PhysRevB.89.174429Search in Google Scholar

[28] N.H. Dung, L. Zhang, Z.Q. Ou, L. Zhao, L. van Eijck, A.M. Mulders, M. Avdeev, E. Suard, N.H. van Dijk, E. Brück: Phys. Rev. B 86 (2012) 045134. DOI:10.1103/PhysRevB.86.04513410.1103/PhysRevB.86.045134Search in Google Scholar

[29] H. Yabuta, K. Umeo, T. Takabatake, L. Chen, Y. Uwatoko: J. Magn. Magn. Mater. 310 (2007) 1826 –1828. DOI:10.1016/j.jmmm.2006.10.69910.1016/j.jmmm.2006.10.699Search in Google Scholar

[30] N.V. Thang, H. Yibole, X.F. Miao, K. Goubitz, L. van Eijck, N.H. van Dijk, E. Brück: JOM 69 (2017) 1432 –1438. DOI:10.1007/s11837–017–2400–010.1007/s11837–017–2400–0Search in Google Scholar

[31] B.A. Hunter, C.J. Howard, Rietica, Australian Nuclear Science and Technology Organization: Menai, Australia, 2000.Search in Google Scholar

[32] L. Caron, Z.Q. Ou, T.T. Nguyen, D.T. Cam Thanh, O. Tegus, E. Brück: J. Magn. Magn. Mater. 321 (2009) 3559 –3566. DOI:10.1016/j.jmmm.2009.06.08610.1016/j.jmmm.2009.06.086Search in Google Scholar

[33] A. He, V. Svitlyk, Y. Mozharivskyj: Inorg. Chem. 56 (2017) 2827 –2833. DOI:10.1021/acs.inorgchem.6b0291210.1021/acs.inorgchem.6b02912Search in Google Scholar PubMed

[34] R. Kirk, K.P Arjun, M. Yaroslav, V.K. Pecharsky: Acta Mater. 145 (2018) 369–376. DOI:10.1016/j.actamat.2017.12.02410.1016/j.actamat.2017.12.024Search in Google Scholar

[35] C.F. Li, Z.G. Zheng, W.H. Wang, J.Y. Liu, L. Lei, D.C. Zeng: Physica B 594 (2020) 412309. DOI:10.1016/J.PHYSB.2020.41230910.1016/J.PHYSB.2020.412309Search in Google Scholar

[36] J.W. Lai, X. Tang, H. Sepehri-Amin, K. Hono: Scr. Mater. 183 (2020) 127–132. DOI:10.1016/j.scriptamat.2020.03.02410.1016/j.scriptamat.2020.03.024Search in Google Scholar

[37] Z.G. Zheng, D.C. Zeng, Z.G. Qiu: J. Magn. Magn. Mater. 465 (2018) 19–24. DOI:10.1016/j.jmmm.2018.05.08210.1016/j.jmmm.2018.05.082Search in Google Scholar

[38] Z.G. Zheng, L. Lei, W.Q. Zeng, Z.G. Qiu, Y. Hong, D.C. Zeng: Int. J. Mater. Res. 111 (2020) 744–752. DOI:10.3139/146.11193410.3139/146.111934Search in Google Scholar

[39] A.C. Ferrari, J. Robertson: Philos. Trans. A Math. Phys. Eng. Sci. 362 (2004) 2477–2512. PMid:15482988; DOI:10.1098/rsta.2004.145210.1098/rsta.2004.1452Search in Google Scholar PubMed

[40] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus: Phys. Rep. 473 (2009) 51–87. DOI:10.1016/j.physrep.2009.02.00310.1016/j.physrep.2009.02.003Search in Google Scholar

[41] P.V. Krasovskii, S.K. Sigalaev, Y.V. Grigoriev: Ceram. Int. 47 (2021) 7957–7965. DOI:10.1016/J.CERAMINT.2020.11.14510.1016/J.CERAMINT.2020.11.145Search in Google Scholar

Received: 2021-02-16
Accepted: 2021-08-03
Published Online: 2021-11-05

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 4.12.2022 from
Scroll Up Arrow