Accessible Unlicensed Requires Authentication Published by De Gruyter September 24, 2021

Effects of Zr and Sc additions on precipitation of α-Al(FeMn)Si dispersoids under various heat treatments in Al–Mg–Si AA6082 alloys

Kun Liu, Emad Elgallad, Chen Li and X.-Grant. Chen

Abstract

The present work investigated the influence of Zr and Sc on the evolution of α-Al(FeMn)Si dispersoids (“α-dispersoids") in Al–Mg–Si alloys. Both the individual addition of Zr and the combined additions of Sc and Zr increased the size but decreased the number density of the α-dispersoids, indicating the reduction in the formation of α-dispersoids. However, the reduction levels were the most significant when heat-treated at 350 °C in the alloy with both Sc and Zr and at 400 °C in the alloy with only Zr, which were likely related to the different interactions between intermediate B’ precipitates and α-dispersoids with the addition of Zr and Sc. Although the α-dispersoids were suppressed in the Zr/Sc-containing alloys, their microhardness was generally higher than the base alloy, which can be attributed to the strengthening contribution induced by Zr and Sc either from their solid solution hardening or the precipitation hardening of Al3Zr/Al3(Sc, Zr) dispersoids.


Dr. Kun Liu Department of Applied Science University of Quebec at Chicoutimi 555, Boul., de l’universite Chicoutimi Quebec Canada, G7H2W9 Tel.: +1-4185455011 ext.7112

Acknowledgements

The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Aluminum through the Research Chair in the Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi. The authors also acknowledge the help on the TEM sample preparation and observation from Z. Chen.

  1. Conflict of interest

    Conflict of interest statement: On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] L.P. Troeger, E.A. Starke: Mater. Sci. Eng., A 277 (2000) 102. DOI:10.1016/S0921-5093(99)00543-2 Search in Google Scholar

[2] K. Liu, F.A. Mirza, X.G. Chen: Metals 8 (2018) 528. DOI:10.3390/met8070528 Search in Google Scholar

[3] R.A. Jeniski, B. Thanaboonsombut, T.H. Sanders: Metall. Mater. Trans. A 27 (1996) 19. DOI:10.1007/bf02647743 Search in Google Scholar

[4] C. Li, K. Liu, X.G. Chen: J. Mater. Sci. Technol. 39 (2020) 135. DOI:10.1016/j.jmst.2019.08.027 Search in Google Scholar

[5] Z. Li, Z. Zhang, X.G. Chen: Mater. Sci. Eng., A 708 (2017) 383. DOI:10.1016/j.msea.2017.10.013 Search in Google Scholar

[6] K. Liu, X.G. Chen: Mater. Des. 84 (2015) 340. DOI:10.1016/j.matdes.2015.06.140 Search in Google Scholar

[7] K. Huang, Y.J. Li, K. Marthinsen: Mater. Charact. 102 (2015) 92. DOI:10.1016/j.matchar.2015.02.015 Search in Google Scholar

[8] W.J. Poole, X. Wang, J.D. Embury, D.J. Lloyd: Mater. Sci. Eng., A 755 (2019) 307. DOI:10.1016/j.msea.2019.03.015 Search in Google Scholar

[9] B. Forbord, H. Hallem, N. Ryum, K. Marthinsen: Mater. Sci. Eng., A 387–389 (2004) 936. DOI:10.1016/j.msea.2003.10.374 Search in Google Scholar

[10] Y.W. Riddle, H. Hallem, N. Ryum: Mater. Sci. Forum 396–402 (2002) 563. DOI:10.4028/www.scientific.net/MSF.396-402.563 Search in Google Scholar

[11] J.D. Robson: Acta Mater. 52 (2004) 1409. DOI:10.1016/j.actamat.2003.11.023 Search in Google Scholar

[12] V.M.S. Muthaiah, S. Mula: J. Alloys Compd. 688 (2016) 571. DOI:10.1016/j.jallcom.2016.07.038 Search in Google Scholar

[13] R. Guan, Y. Shen, Z. Zhao, X. Wang: J. Mater. Sci. Technol. 33 (2017) 215. DOI:10.1016/j.jmst.2017.01.017 Search in Google Scholar

[14] M. Conserva, M. Leoni: Metall. Trans. A 6 (1975) 189. DOI:10.1007/BF02673687 Search in Google Scholar

[15] Z. Li, Z. Zhang, X.G. Chen: Mater. Sci. Eng., A 729 (2018) 196. DOI:10.1016/j.msea.2018.05.055 Search in Google Scholar

[16] M.J. Starink, N. Gao, N. Kamp, S.C. Wang, P.D. Pitcher, I. Sinclair: Mater. Sci. Eng., A 418 (2006) 241. DOI:10.1016/j.msea.2005.11.023 Search in Google Scholar

[17] S.W. Cheong, H. Weiland: Mater. Sci. Forum 558–559 (2007) 153. DOI:10.4028/www.scientific.net/MSF.558-559.153 Search in Google Scholar

[18] Z. Jia, G. Hu, B. Forbord, J.K. Solberg: Mater. Sci. Eng., A 444 (2007) 284. DOI:10.1016/j.msea.2006.08.097 Search in Google Scholar

[19] T. Ohashi, L. Dai, N. Fukatsu: Metall. Trans. A 17 (1986) 799. DOI:10.1007/BF02643855 Search in Google Scholar

[20] A. Johansen, O. Bauger, J.D. Embury, N. Ryum: Aluminium (Dusseldorf) 82 (2006) 868. Search in Google Scholar

[21] J. Osten, B. Milkereit, C. Schick, O. Kessler: Materials 8 (2015) 2830. DOI:10.3390/ma8052830 Search in Google Scholar

[22] M. Afshar, F. Mao, H. Jiang, V. Mohles, M. Schick, K. Hack, S. Korte-Kerzel, L.A. Barrales-Mora: Comput. Mater. Sci. 158 (2019) 235. DOI:10.1016/j.commatsci.2018.11.023 Search in Google Scholar

[23] C. Li, K. Liu, N. Parson, X.G. Chen: The effect of heat treatment on precipitation behavior of dispersoids in Al-Mg-Si Alloy. In: Wells M, Brochu M, editors. 16th International Aluminum Alloys Conference (ICAA16). Mcgill University, Montreal, Canada (2018) 389101. Search in Google Scholar

[24] E.M. Elgallad, K. Liu, Z. Zhang, X.G. Chen: Philos. Mag. 101 (2021) 96. DOI:10.1080/14786435.2020.1826592 Search in Google Scholar

[25] T. Dorin, M. Ramajayam, A. Vahid, T. Langan (2018) Chapter 12 – Aluminium Scandium Alloys. in: Lumley RN, editor. Fundamentals of Aluminium Metallurgy: Woodhead Publishing; (2018) 439. DOI:10.1016/B978-0-08-102063-0.00012-6 Search in Google Scholar

[26] L.L. Rokhlin, N.R. Bochvar, I.E. Tarytina, N.P. Leonova: Russ. Metall. 2010 (2010) 241. DOI:10.1134/S0036029510030158 Search in Google Scholar

[27] X. Wang, S. Esmaeili, D.J. Lloyd: Metall. Mater. Trans. A 37 (2006) 2691. DOI:10.1007/BF02586103 Search in Google Scholar

[28] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper: Acta Mater. 46 (1998) 3893. DOI:10.1016/S1359-6454(98)00059-7 Search in Google Scholar

[29] X. Fang, M. Song, K. Li, Y. Du: J. Min. Metall. Sect. B-Metall. 46 (2010) 171. DOI:10.2298/JMMB1002171F Search in Google Scholar

[30] L. Lodgaard, N. Ryum: Mater. Sci. Eng., A 283 (2000) 144. DOI:10.1016/S0921-5093(00)00734-6 Search in Google Scholar

[31] R.H. Kemsies, B. Milkereit, S. Wenner, R. Holmestad, O. Kessler: Mater. Des. 146 (2018) 96. DOI:10.1016/j.matdes.2018.03.007 Search in Google Scholar

[32] K. Strobel, M.A. Easton, L. Sweet, M.J. Couper, J.-F. Nie: Mater. Trans. 52 (2011) 914. DOI:10.2320/matertrans.L-MZ201111 Search in Google Scholar

[33] W.F. Miao, D.E. Laughlin: Scripta Mater. 40 (1999) 873. DOI:10.1016/S1359-6462(99)00046-9 Search in Google Scholar

[34] A. Gaber, M.A. Gaffar, M.S. Mostafa, E.F.A. Zeid: J. Alloys Compd. 429 (2007) 167. DOI:10.1016/j.jallcom.2006.04.021 Search in Google Scholar

[35] B. Milkereit, N. Wanderka, C. Schick, O. Kessler: Mater. Sci. Eng., A 550 (2012) 87. DOI:10.1016/j.msea.2012.04.033 Search in Google Scholar

[36] K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, S. Ikeno: J. Mater. Sci. 35 (2000) 179. DOI:10.1023/A:1004769305736 Search in Google Scholar

[37] M. Yang, H. Chen, A. Orekhov, Q. Lu, X. Lan, K. Li, S. Zhang, M. Song, Y. Kong, D. Schryvers, Y. Du: Mater. Sci. Eng., A 774 (2020) 138776. DOI:10.1016/j.msea.2019.138776 Search in Google Scholar

[38] Z. Li, Z. Zhang, X.G. Chen: Metall. Mater. Trans. A 49 (2018) 5799. DOI:10.1007/s11661-018-4852-4 Search in Google Scholar

[39] T. Dorin, M. Ramajayam, S. Babaniaris, L. Jiang, T.J. Langan: Materialia 8 (2019) 100437. DOI:10.1016/j.mtla.2019.100437 Search in Google Scholar

[40] M. Vončina, J. Medved, S. Kores, P. Xie, P. Schumacher, J. Li: Mater. Charact. 155 (2019) 109820. DOI:10.1016/j.matchar.2019.109820 Search in Google Scholar

Received: 2021-03-17
Accepted: 2021-06-28
Published Online: 2021-09-24
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany