Abstract
The Al–Si alloys exhibit many unique properties, but not enough work has been dedicated to their thermophysical properties. In this work, the effect of phosphorus modifier on the density, molar volume and solidification shrinkage rate of Al-25% Si alloys was investigated by using the indirect Archimedes method. The results show that both density–temperature and molar volume–temperature curves show three inflection points: the liquidus temperature point, the eutectic transformation starting point and the finishing point. The density of the solidus linearly decreases and that of the liquidus linearly increases with phosphorus modifier content. Compared with Vegard’s law, the molar volumes show a negative deviation. Finally, the solidification shrinkage rate is calculated from the densities of solidus and liquidus.
Funding statement: The authors are grateful for the financial support of the Natural Science Foundation of Shaanxi Province (No. 2020JQ-810) and Natural Science Foundation of China (Nos.51971166).
References
[1] L. Luo, L.S. Luo, Y.Q. Su, L. Su, L. Wang, J.J. Guo, H.Z. Fu: J. Mater. Sci. Technol. 74 (2021) 246. DOI:10.1016/j.jmst.2020.10.03510.1016/j.jmst.2020.10.035Search in Google Scholar
[2] J.Q. Gan, Y.J. Huang, C. Wen, J. Du: T. Nonferr. Metal. Soc. 30 (2020) 2879. DOI:10.1016/s1003-6326(20)65428-010.1016/s1003-6326(20)65428-0Search in Google Scholar
[3] R. Haghyeghi, G. Timelli: Mater. Lett. 283 (2021) 128779. DOI:10.1016/j.matlet.2020.12877910.1016/j.matlet.2020.128779Search in Google Scholar
[4] C. Gu, C.D. Ridgeway, E. Cinkilic, Y. Lu, A.A. Luo: J. Mater. Sci. Technol. 49 (2020) 91. DOI:10.1016/j.jmst.2020.02.02810.1016/j.jmst.2020.02.028Search in Google Scholar
[5] G. Agarwal, M. Amirthalingam, S.C. Moon, R.J. Dippenaar, I.M. Richardson, M.J.M. Hermans: Scr. Mater. 146 (2018) 105. DOI:10.1016/j.scriptamat.2017.11.00310.1016/j.scriptamat.2017.11.003Search in Google Scholar
[6] Z.M. Gao, W.Q. Jie, Y.Q. Liu, H.J. Luo: Acta Mater. 127 (2017) 277. DOI:10.1016/j.actamat.2017.01.04210.1016/j.actamat.2017.01.042Search in Google Scholar
[7] T. Magnusson, L. Arnberg: Metall. Mater. Trans. A 32 (2001) 2605. DOI:10.1007/s11661-001-0050-910.1007/s11661-001-0050-9Search in Google Scholar
[8] B. Dang, Z.Y. Jian, J.F. Xu, S.B. Li: Int. J. Mater. Res. 108 (2017) 815. DOI:10.3139/146.11154510.3139/146.111545Search in Google Scholar
[9] Y.J. Xu, Y. Deng, D. Casari, R.H. Mathiesen, X.F. Liu, Y.J. Li: J. Alloys Compd. 854 (2021) 155323. DOI:10.1016/j.jallcom.2020.15532310.1016/j.jallcom.2020.155323Search in Google Scholar
[10] K. Sunitha, K. Gurusami: Mater. Today 43 (2020) 1825. DOI:10.1016/j.matpr.2020.10.68410.1016/j.matpr.2020.10.684Search in Google Scholar
[11] F.C.R. Hernandez, M.B. Djurdjevic, W.T. Kierkus, J.H. Sokolowski: Mater. Sci. Eng. A 396 (2005) 271. DOI:10.1016/j.msea.2005.01.02410.1016/j.msea.2005.01.024Search in Google Scholar
[12] L. Fang, S.F. Zhang, F. Xiao, R.H. Yang, K. Mukai: J. Alloys Compd. 493 (2010) 465. DOI:10.1016/j.jallcom.2009.12.12810.1016/j.jallcom.2009.12.128Search in Google Scholar
[13] P. Srirangam, M. Jeyakumar, M.J. Kramer, S. Shankar: Philos. Mag. 91 (2011) 3867. DOI:10.1080/14786435.2011.59736010.1080/14786435.2011.597360Search in Google Scholar
[14] David R. Lide: CRC Handbook of Chemistry and Physics, CRC Press, New York (1997).Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany