Accessible Unlicensed Requires Authentication Published by De Gruyter September 24, 2021

Enthalpies of mixing in ternary Al–Gd–Mn liquid alloys

Michael Ivanov, Natalia Usenko and Natalia Kotova

Abstract

The enthalpies of mixing in liquid alloys of the ternary Al–Gd–Mn system were determined over a wide range of compositions by means of isoperibolic calorimetry at 1650 K. The measurements of the partial enthalpies of components were performed along five sections: for the ΔAl (sections with xGd/xMn = 0.30/0.70 and 0.65/0.35 for x Al changed from 0 up to 0.30); for the ΔGd (xAl/xMn = 0.80/ 0.20 and 0.50/0.50 for xGd changed from 0 up to 0.30); for the ΔMn (xAl/xGd = 0.29/0.71 for xMn changed from 0 up to 0.26). The enthalpies of mixing in the ternary system were found to be exothermic and steadily increasing in absolute values from the Mn corner towards the Al–Gd constituent binary system, reaching the minimum value of approximately – 37 kJ · mol–1 in the vicinity of the Al0.6Gd0.4 composition, evidently related to the formation of stable Al2Gd phase.


Dr. Natalia Usenko Faculty of Chemistry Taras Shevchenko National University Volodymirska St. 64 01601 Kyiv Ukraine Tel.: +380442393370

Appendix A

Table A1 Experimental data points of the partial enthalpies of mixing of gadolinium ΔH¯Gd and manganese ΔH¯Mn in the Al– Gd–Mn system at 1650 K (kJ · mol–1).

ΔH¯Gd for sections with xAl=xMn
ΔH¯Mn for section with xAl=xGd
0.50/0.50
0.80/0.20
0.29/0.71
xGd ΔGd xGd ΔGd xMn ΔMn
0.023 –68.9 0.016 –124.8 0.021 –18.8
0.032 –65.3 0.027 –130.2 0.034 –16.1
0.042 –63.8 0.037 –120.8 0.042 –15.4
0.053 –63.4 0.046 –122.4 0.053 –12.7
0.064 –57.9 0.055 –121.5 0.064 –15.6
0.075 –61.2 0.065 –116.8 0.074 –10.1
0.087 –54.8 0.073 –124.3 0.083 –8.2
0.099 –55.6 0.081 –120.6 0.091 –6.7
0.110 –56.5 0.089 –107.3 0.099 –4.6
0.121 –56.1 0.100 –103.4 0.109 –8.4
0.133 –50.1 0.109 –118.2 0.118 –1.9
0.140 –47.8 0.117 –119.1 0.126 –3.2
0.150 –51.6 0.123 –109.6 0.134 2.2
0.157 –52.4 0.131 –100.8 0.142 –5.8
0.140 –112.5 0.172 –3.2
0.193 –43.5 0.146 –110.6 0.183 5.3
0.204 –45.8 0.153 –113.1 0.188 7.6
0.213 –44.9 0.161 –94.8 0.191 2.8
0.222 –41.8 0.169 –101.6 0.196 4.3
0.230 –39.6 0.178 –92.3 0.201 8.5
0.238 –34.8 0.186 –99.6 0.208 6.9
0.245 –35.9 0.193 –90.1 0.214 12.1
0.251 –33.0 0.200 –98.4 0.219 10.9
0.255 –37.6 0.209 –100.5 0.225 10.3
0.264 –35.0 0.217 –92.3 0.231 8.7
0.270 –33.9 0.226 –84.6 0.237 3.1
0.277 –32.6 0.234 –79.5 0.243 8.0
0.285 –33.3 0.243 –89.9 0.249 12.5
0.294 –32.8 0.256 –86.4 0.255 7.6
0.300 –28.3 0.260 12.1

Table A2 Experimental data points of the partial enthalpy of aluminium ΔH¯Al in the Al–Gd–Mn ternary system at 1650 K (kJ · mol–1).

ΔH¯Al for sections with xGd=xMn
0.30/0.70
0.65/0.35
xAl ΔAl xAl ΔAl
0.008 –69.8 0.005 –83.4
0.012 –65.2 0.009 –80.5
0.017 –70.4 0.013 –82.6
0.022 –65.1 0.017 –84.1
0.026 –61.4 0.022 –82.4
0.031 –60.8 0.026 –83.1
0.037 –63.0 0.030 –79.6
0.042 –56.9 0.034 –83.4
0.048 –60.8 0.040 –79.9
0.054 –66.9 0.046 –79.6
0.059 –61.8 0.052 –82.8
0.065 –64.4 0.060 –78.9
0.073 –60.2 0.067 –80.8
0.080 –61.2 0.073 –82.9
0.086 –68.9 0.080 –78.9
0.095 –62.8
0.138 –76.9
0.141 –58.1 0.144 –71.5
0.149 –52.2 0.150 –78.2
0.157 –61.3 0.157 –75.5
0.166 –53.1 0.163 –72.3
0.173 –57.3 0.169 –79.0
0.180 –49.9 0.175 –66.7
0.188 –56.8 0.181 –65.1
0.196 –60.3 0.188 –72.6
0.203 –54.7 0.193 –76.9
0.210 –53.8 0.198 –72.1
0.215 –53.2 0.203 –66.9
0.222 –51.7 0.209 –70.5
0.231 –56.5 0.216 –64.8
0.240 –49.7 0.223 –69.2
0.246 –52.6 0.230 –70.3
0.251 –47.8 0.237 –62.8
0.257 –52.4 0.244 –64.9
0.264 –56.1 0.250 –57.1
0.269 –48.5 0.256 –60.9
0.264 –56.2
0.271 –63
0.280 –55.6
0.285 –50.3
0.294 –58.6
0.299 –53.1

References

[1] G. Yaniv, D. Fuks, L. Meshi: Intermetallics 100 (2018) 44. DOI:10.1016/j.intermet.2018.05.017 Search in Google Scholar

[2] C. Mayer, B. Chevalier, S. Gorsse: J. Alloys Compd. 507 (2010) 370. DOI:10.1016/j.jallcom.2010.07.210 Search in Google Scholar

[3] A.B. Oliveira, R.A.G. Silva: Mater. Chem. Phys. 209 (2018) 112. DOI:10.1016/j.matchemphys.2018.01.072 Search in Google Scholar

[4] G.F. Brazolin, C. Aksu Canbay, S. Ozgen, A.B. Oliveira, R.A.G. Silva: Appl. Phys. A 122 (2016) 928. DOI:10.1007/s00339-016-0474-0 Search in Google Scholar

[5] V. Bykov, S. Uporov, T. Kulikova: Trans. Nonferrous Met. Soc. China 25 (2015) 1911. DOI:10.1016/S1003-6326(15)63798-0 Search in Google Scholar

[6] H. Bo, L.B. Liu, J.L. Hu, X.D. Zhang, Z.P. Jin: Thermochim. Acta 591 (2014) 51. DOI:10.1016/j.tca.2014.07.014 Search in Google Scholar

[7] D.S. Kanibolotsky, N.V. Golovataya, V.V. Lisnyak: J. Therm. Anal. Calorim. 76 (2004) 323. DOI:10.1023/B:JTAN.0000027831.78906.0α Search in Google Scholar

[8] F. Sommer, M. Keita: J. Less-Common Met. 136 (1987) 95. DOI:10.1016/0022-5088(87)90013-0 Search in Google Scholar

[9] C. Colinet, A. Pasturel, K.H.J. Buschow: Physica B. 150 (1988) 397–403. DOI:10.1016/0378-4363(88)90080-0 Search in Google Scholar

[10] J. Gröbner, D. Kevorkov, R. Schmid-Fetzer: Z. Metallkd. 92 (2001) 22. DOI:10.1361/105497101770339274 Search in Google Scholar

[11] J. Gröbner, A. Pisch, R. Schmid-Fetzer: J. Alloys Compd. 317 – 318 (2001) 433. DOI:10.1016/S0925-8388(00)01364-5 Search in Google Scholar

[12] M. Ivanov, V. Berezutski, N. Usenko: Int. J. Mater. Res. (Z. Metallkd.) 102 (2011) 277. DOI:10.3139/146.110474 Search in Google Scholar

[13] S. Ohno, H. Shimakura, S. Tahara, T. Okada: J. Phys. Soc. Japan 85 (2016) 124715, 1. DOI:10.7566/JPSJ.85.124715 Search in Google Scholar

[14] R.-Y. Li, J.-Y. Qin, T.-K. Gu, X.-F. Bian: J. Non-Cryst. Solids 354 (2008) 1736. DOI:10.1016/j.jnoncrysol.2007.08.086 Search in Google Scholar

[15] O.S. Roik, V.P. Kazimirov, V.E. Sokolskii, S.M. Galushko: J. Non-Cryst. Solids 364 (2013) 34. DOI:10.1016/j.jnoncrysol.2012.12.040 Search in Google Scholar

[16] A. Jansson: Metall. Trans. 23A (1992) 2953. DOI:10.1007/BF02646113 Search in Google Scholar

[17] X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida: J. Phas. Equilibria 20 (1999) 45. DOI:10.1361/105497199770335938 Search in Google Scholar

[18] Y. Du, J. Wang, J. Zhao, J.C. Schuster, F. Weitzer, R. Schmid-Fetzer, M. Ohno, H. Xu, Z. Liu, S. Shang,W. Zhang: Int. J. Mat. Res. (formerly Z. Metallkd.) 98 (2007) 855. DOI:10.3139/146.101547 Search in Google Scholar

[19] A. Shukla, A.D. Pelton: J. Phase Equilibria Diff. 30 (2009) 28. DOI:10.1007/s11669-008-9426-5 Search in Google Scholar

[20] Y.O. Esin, N.T. Bobrov, M.S. Petrushevskii, P.V. Geld: Russ. J. Phys. Chem. 47 (1973) 1959. Search in Google Scholar

[21] N.I. Usenko, M.I. Ivanov, V.M. Petiuh, V.T. Witusiewicz: J. Alloys Compd. 190 (1993) 149. DOI:10.1016/0925-8388(93)90391-Y Search in Google Scholar

[22] M. Ivanov, V. Berezutski, N. Usenko: Int. J. Mater. Res. (Z. Metallkd.) 102 (2011) 277. DOI:10.3139/146.110474 Search in Google Scholar

[23] A.T. Dinsdale: Calphad 15 (1991) 317. DOI:10.1016/0364-5916(91)90030-N Search in Google Scholar

[24] C.W. Bale, A.D Pelton: Metall. Trans. 5 (1974) 2323. DOI:10.1007/BF02644013 Search in Google Scholar

[25] L.S. Darken: J. Am. Chem. Soc. 72 (1950) 2909. DOI:10.1021/ja01163α030 Search in Google Scholar

[26] M. Hillert: Calphad 4 (1980) 1. DOI:10.1016/0364-5916(80)90016-4 Search in Google Scholar

[27] https://www.webelements.com/periodicity/eneg_allred_rochow/ Search in Google Scholar

[28] G.I. Batalin, E.A. Beloborodova, V.P. Kazimirov: Thermodynamics and structure of Al-based liquid alloys, Metallurgy, Moscow (1983) (in Rus.). Search in Google Scholar

Received: 2021-04-02
Accepted: 2021-06-25
Published Online: 2021-09-24
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany