Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 15, 2021

Influence of alloying systems on the properties of single crystal nickel-based superalloys

Alexander Glotka ORCID logo and Vadim Ol’shanetskii

Abstract

The purpose of the investigation was to obtain the predictive regression models that help correct the calculation of the mechanical properties of single crystal nickel-based superalloys without conducting prior experiments. The paper considers the influence of alloying elements on their tendency to form phases in foundry nickel-based superalloys. Using the elements influence on the phase formation, the coefficient Kc’ of the ratio of alloying elements for this class of alloys was set for the first time. We have revealed the short correlation of the ratio Kc’ with the dimensional misfit of γ and γ’ crystal lattices. Also, a high probability to predict the misfit for multicomponent nickel systems is shown, which significantly affected the strength properties. The regression models of correlation dependencies on the dimensional γ/γ’- misfit were offered to predict the short-term and long-term limits of the strength of alloys. We determined the operating temperature at which the misfit value should decrease to zero. The structure stability should increase because of the structural stresses minimizing. This has a positive effect on strength and plastic properties.


Dr. Alexander Glotka Zaporizhzhia Polytechnic National University Zhukovsky 64 69063 Zaporizhzhia Ukraine Tel: +38 (0)96 427 5651 Web: https://zp.edu.ua/?q=node/4775 Scopus Author ID – 56107270800 Web of Science ResearcherID – G-8537-2018

References

[1] G.L. Wang, J.L. Liu, J.D. Liu: Acta Metall. Sin. (Engl. Lett.) 34 (2021) 719. https://doi.org/10.1007/s40195–020–01131-ySearch in Google Scholar

[2] J. He, Z. Yu, L. Li: Acta Metall. Sin. (Engl. Lett.) 33 (2020) 1681. DOI:10.1007/s40195-020-01051-x10.1007/s40195-020-01051-xSearch in Google Scholar

[3] R.C. Reed, in: The Superalloys: Fundamentals and Applications Cambridge University Press, Cambridge (2006) ISBN 0–521– 85904 –2.Search in Google Scholar

[4] Z. Zhang, W. Wang, C. Jin: Int. J. Adv. Manuf. Technol. 114 (2021) 883. DOI:10.1007/s00170-021-06883-010.1007/s00170-021-06883-0Search in Google Scholar

[5] R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, C.M.F. Rae: Acta Mater. 47 (1999) 3367. DOI:10.1016/S1359-6454(99)00217-710.1016/S1359-6454(99)00217-7Search in Google Scholar

[6] M.F. Moreira, L.B. Fantin, C.R.F. Azevedo: Inter Metalcast 15 (2021) 676. DOI:10.1007/s40962-020-00496-110.1007/s40962-020-00496-1Search in Google Scholar

[7] O.A. Balitskii, V.O. Kolesnikov, A.I. Balitskii, J.J. Eliasz, M.R. Havrylyuk: Archives of Materials Science and Engineering 104/ 2 (2020) 49. DOI:10.5604/01.3001.0014.489410.5604/01.3001.0014.4894Search in Google Scholar

[8] C.T. Sims, N.S. Stoloff, W.C. Hagel, in: Superalloys II. United States: N. p., 1987.Search in Google Scholar

[9] Y. Du, Z. Tan, Y. Yang: Met. Mater. Int. (2021). https://doi.org/10.1007/s12540–020–00903 –6.Search in Google Scholar

[10] O.A. Glotka, O.V. Ovchinnikov, V.I. Degtyaryov: Powder Metall. Met. Ceram. 56 (2018) 726. DOI:10.1007/s11106-018-9948-210.1007/s11106-018-9948-2Search in Google Scholar

[11] N.V. Petrushin, A.G. Evgenov, A.V. Zavodov: Inorg. Mater. Appl. Res. 9 (2018) 620. DOI:10.1134/S207511331804028710.1134/S2075113318040287Search in Google Scholar

[12] R.W. Evans, B. Wilshire: Creep of metals and alloys. United States: N. p., 1985.Search in Google Scholar

[13] O.I. Balyts’kyi, L.M. Ivas’kevych, J.J. Eliasz: Strength Mater. 52 (2020) 386. DOI:10.1007/s11223-020-00189-410.1007/s11223-020-00189-4Search in Google Scholar

[14] P.G. Min, V.V. Sidorov, S.A. Budinovskiy: Inorg. Mater. Appl. Res. 8 (2017) 90. DOI:10.1134/S207511331701023310.1134/S2075113317010233Search in Google Scholar

[15] N.A. Protasova, I.L. Svetlov: Inorg. Mater. Appl. Res. 4 (2013) 52. DOI:10.1134/S207511331301010310.1134/S2075113313010103Search in Google Scholar

[16] A. Heckl, R. Rettig, R. Singer: Metall. Mater. Trans. A 41 (2010) 202. DOI:10.1007/s11661-009-0076-y10.1007/s11661-009-0076-ySearch in Google Scholar

[17] O.M. Horst, D. Adler, P. Git, H. Wang, J. Streitberger, M. Holtkamp, N. Jöns, R.F. Singer, C. Körner, G. Eggeler, Mater. Des. 195 (2020). DOI:10.1016/j.matdes.2020.10897610.1016/j.matdes.2020.108976Search in Google Scholar

[18] M.S. Belyaev, N.V. Petrushin: Inorg. Mater. Appl. Res. 9 (2018) 655. DOI:10.1134/S207511331804004410.1134/S2075113318040044Search in Google Scholar

[19] O.G. Ospennikova, N.V. Petrushin, I.A. Treninkov: Inorg.Mater. Appl. Res. 7 (2016) 832. DOI:10.1134/S207511331606013710.1134/S2075113316060137Search in Google Scholar

[20] A.I. Epishin, I.L. Svetlov: Inorg. Mater. Appl. Res. 7 (2016) 45. DOI:10.1134/S207511331601005610.1134/S2075113316010056Search in Google Scholar

[21] A. Balitskii, L. Ivaskevich: Adv. Mater. Sci. Eng. 2019 8. DOI:10.1155/2019/368025310.1155/2019/3680253Search in Google Scholar

[22] R. Giraud, Z. Hervier, J. Cormier: Metall. Mater. Trans. A 44 (2013) 131. DOI:10.1007/s11661-012-1397-910.1007/s11661-012-1397-9Search in Google Scholar

[23] K. Fritscher: SN Appl. Sci. 2 (2020) 2158. https://doi.org/10.1007/s42452–020–03938-xSearch in Google Scholar

[24] E.R. Golubovskii, I.L. Svetlov: Strength Mater. 34 (2002) 109. DOI:10.1023/A:101536572396210.1023/A:1015365723962Search in Google Scholar

[25] H. Biermann, M. Strehler, H. Mughrabi: Metall. Mater. Trans. A 27 (1996) 1003. DOI:10.1007/BF0264976810.1007/BF02649768Search in Google Scholar

[26] S. Tian, Y. Su, L. Yu: Appl. Phys. A 104 (2011) 643. DOI:10.1007/s00339-011-6302-710.1007/s00339-011-6302-7Search in Google Scholar

[27] H. Mughrabi Acta Mater. 81 (2014) 21. DOI:10.1016/j.actamat.2014.08.00510.1016/j.actamat.2014.08.005Search in Google Scholar

[28] R. Eriş, M.V. Akdeniz, A.O. Mekhrabov: Metall. Mater. Trans. A (2021). https://doi.org/10.1007/s11661–021–06222 –8.Search in Google Scholar

[29] Z. Ma, Y.L. Pei, L. Luo: Rare Met. 40 (2021) 920. DOI:10.1007/s12598-019-01309-z10.1007/s12598-019-01309-zSearch in Google Scholar

[30] A. Balitskii: Procedia Structural Integrity 16 (2019) 134. DOI:10.1016/j.prostr.2019.07.03210.1016/j.prostr.2019.07.032Search in Google Scholar

[31] O.A. Glotka, S.V. Haiduk: Metallofiz. Noveishie Tekhnol. 42 (2020) 869 (in Russian) DOI:10.15407/mfint.42.06.086910.15407/mfint.42.06.0869Search in Google Scholar

[32] Yh. Duan, P. Zhang, J. Li: J. Cent. South Univ. 27 (2020) 325. https://doi.org/10.1007/s11771–020–4298-x DOI:10.1007/s11771-020-4298-x10.1007/s11771-020-4298-xSearch in Google Scholar

[33] X.W. Jiang, D. Wang, D. Wang: Metall. Mater. Trans. A 49 (2018) 5309. DOI:10.1007/s11661-018-4857-z10.1007/s11661-018-4857-zSearch in Google Scholar

[34] M. Zietara, S. Neumeier, M. Göken: Met. Mater. Int. 23 (2017) 126. DOI:10.1007/s12540-017-6109-y10.1007/s12540-017-6109-ySearch in Google Scholar

[35] A.A. Hlotka, S.V. Haiduk: Mater. Sci. 55 (2020) 878. DOI:10.1007/s11003-020-00382-510.1007/s11003-020-00382-5Search in Google Scholar

[36] A. Glotka, V. Ol’shanetskii: Acta Metall. Slovaca 27 (2021) 68– 71. DOI:10.36547/ams.27.2.81310.36547/ams.27.2.813Search in Google Scholar

[37] L. Zhao, N. Odowd, E. Busso: J. Mech. Phys. Solids 54 (2006) 288. DOI:10.1016/j.jmps.2005.09.00110.1016/j.jmps.2005.09.001Search in Google Scholar

[38] A. Sato, H. Harada, A. Yeh, K. Kawagishi, T. Kobayashi, Y. Koizumi, T. Yokokawa, J.X. Zhang: Superalloys (2008) 131.Search in Google Scholar

[39] C. Chen, Q. Wang, C. Dong: Sci. Rep. 10 (2020) 21621. https://doi.org/10.1038/s41598–020–78690–8Search in Google Scholar

[40] R. Glas, M. Jouiad, P. Caron, N. Clement, H.O.K. Kirchner: Acta Mater. 44 (1996) 4917. DOI:10.1016/S1359-6454(96)00096-110.1016/S1359-6454(96)00096-1Search in Google Scholar

[41] S. Steuer, Z. Hervier, S. Thabart, C. Castaing, T.M. Pollock, J, Cormier: Mater. Sci. Eng. A 601 (2014) 145. DOI:10.1016/j.msea.2014.02.04610.1016/j.msea.2014.02.046Search in Google Scholar

Received: 2021-03-26
Accepted: 2021-08-04
Published Online: 2021-10-15

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany