Accessible Unlicensed Requires Authentication Published by De Gruyter November 20, 2021

A solid-state approach for the low temperature synthesis of Cr3Si hollow particles

Liangbiao Wang, Zhe Chen, Yongjie Xie, Yuting Xiong, Qinglin Cheng, Ziyan Wang, Hengyuan Zhang, Ziming Zhou, Kailong Zhang and Tao Mei

Abstract

In this paper, pure cubic chromium silicide (Cr3Si) hollow particles have been successfully synthesized through the solid-state reaction of chromium sesquioxide, silicon powder and metallic lithium in an autoclave at 600 °C for 10 h. The as-prepared samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy, which showed that the as-prepared samples were cubic phase Cr3Si hollow particles. Furthermore, the oxidation resistance of the obtained Cr3Si sample was also investigated.


Dr. Liangbiao Wang School of Chemistry and Environment Engineering Jiangsu University of Technology No. 1801 Zhongwu Road Changzhou 213001 P. R. China
Dr. Kailong Zhang Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu School of Chemical Engineering Huaiyin Institute of Technology Huaian, China No. 1 Yuancheng Road Huai ’an 223003 P. R. China
Prof. Tao Mei School of Materials Science and Engineering Hubei University Wuhan China No. 368 Youyi Road Wuhan 430062 P. R. China

Funding statement: This work was supported by the National Natural Science Foundation of China (grant no. 52176185), the Changzhou Sci&Tech Program (grant no. CJ20200041) and the Open Project of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu (grant no. HPK202004).

References

[1] E. Mazzega, M. Michelini, F. Nava: J. Phys. F Met. Phys. 17 (1987) 1135• DOI:10.1088/0305-4608/17/5/01310.1088/0305-4608/17/5/013Search in Google Scholar

[2] J.J. Lu, L.B. Wang, J.H. Zhang, Q.W. Li, W.Q. Liu, Z.S. Lou, A. Zheng, Q.F. Zhou: Micro&Nano Lett. 13 (2018) 341• DOI:10.1049/mnl.2017.067410.1049/mnl.2017.0674Search in Google Scholar

[3] L.B. Wang, D.J. Zhao, J.J. Lu, W.Q. Liu, Q.F. Zhou: Int. J. Mater. Res. 109 (2018) 177• DOI:10.3139/146.11158810.3139/146.111588Search in Google Scholar

[4] I. Nishida: J. Mater. Sci. 7 (1972) 1119• DOI:10.1007/BF0055019310.1007/BF00550193Search in Google Scholar

[5] T. Tokushima, I. Nishida, K. Sakata, T. Sakata: J. Mater. Sci. 4 (1969) 978• DOI:10.1007/BF0055531310.1007/BF00555313Search in Google Scholar

[6] C.L. Yeh, J.Z. Lin: Intermetallics 33 (2013) 126• DOI:10.1016/j.intermet.2012.10.00810.1016/j.intermet.2012.10.008Search in Google Scholar

[7] D.L. Zhang: J. Mater. Sci. 31 (1996) 895• DOI:10.1007/BF0035288710.1007/BF00352887Search in Google Scholar

[8] W. Lin, T.Y. Lin, C.W. Huang, Y.H. Ting, T.C. Tsai, C.Y. Huang, S.M. Yang, K.C. Lu, W.W. Wu: Mater. & Design 169 (2019) 107674• DOI:10.1016/j.matdes.2019.10767410.1016/j.matdes.2019.107674Search in Google Scholar

[9] J.H. Ma, Y.L. Gu, L. Shi, L.Y. Chen, Z.H. Yang, Y.T. Qian, J. Alloys Compd., 376 (2004) 176• DOI:10.1016/j.jallcom.2003.12.01510.1016/j.jallcom.2003.12.015Search in Google Scholar

[10] J.H. Ma, Y.L. Gu, L. Shi, L.Y. Chen, Z.H. Yang, Y.T. Qian, J. Alloys Compd., 375 (2004) 249• DOI:10.1016/j.jallcom.2003.11.03110.1016/j.jallcom.2003.11.031Search in Google Scholar

[11] K. Seo, K.S.K. Varadwaj, D. Cha, J. In, Y. Kim, J. Park, B. Kim: J. Phys. Chem. C 111 (2007) 9072• DOI:10.1021/jp071707b10.1021/jp071707bSearch in Google Scholar

[12] L.B. Wang, Q.W. Li, T. Mei, L. Shi, Y.C. Zhu, Y.T. Qian: Mater. Chem. Phys. 137 (2012) 1• DOI:10.1016/j.matchemphys.2012.08.00810.1016/j.matchemphys.2012.08.008Search in Google Scholar

[13] W.C. Dai, L.J. Lu., Y.X. Han, L.B. Wang, J.J. Wang, J.M. Hu, C.C. Ma, K.L. Zhang, T. Mei: ACS Omega. 4 (2019) 4896 –4900• PMid:31459673; DOI:10.1021/acsomega.8b0285610.1021/acsomega.8b02856Search in Google Scholar

[14] L.B. Wang, F. Zhang, W.C. Dai, Q.L. Cheng, K.L. Zhang, Y. Wu, Y.T. Xiong, Y. Lu, Q. Wu, X.H. He: Chem. Lett. 48 (2019) 604• DOI:10.1246/cl.19007510.1246/cl.190075Search in Google Scholar

[15] L.B. Wang, W.J. Xian, K.L. Zhang, W.Q. Liu, H.F. Qin, Q.F. Zhou, Y.T. Qian: Inorg .Chem. Front. 4 (2017) 2055• DOI:10.1039/c7qi00447 h10.1039/c7qi00447hSearch in Google Scholar

[16] L.B. Wang, K.B. Tang, Y.C. Zhu, Q.W. Li, B.C. Zhu, L.C. Wang, L.L. Si, Y.T. Qian: J. Mater. Chem. 22 (2012) 14559• DOI:10.1039/c2jm30844d10.1039/c2jm30844dSearch in Google Scholar

[17] L.B. Wang, Q.L. Cheng, H.F. Qin, Z.C. Li, Z.S. Lou, J.J. Lu, J.H. Zhang, Q.F. Zhou: Dalton Trans. 46 (2017) 2756• DOI:10.1039/c6dt04865j10.1039/c6dt04865jSearch in Google Scholar

[18] L.B. Wang, Q.W. Li, Y.C. Zhu, Y.T. Qian: Int. J. Refract. Met. Hard Mater. 31 (2012) 288• DOI:10.1016/j.ijrmhm.2011.10.00910.1016/j.ijrmhm.2011.10.009Search in Google Scholar

[19] L.B. Wang, W.C. Dai, K.L. Zhang, T. Mei, H.Y. Zhuang, S.S. Song, S. Yang, Q.F. Zhou, Y.T. Qian: Inorg .Chem. Front. 5 (2018) 2893• DOI:10.1039/c8qi00856f10.1039/c8qi00856fSearch in Google Scholar

[20] Z.C. Ju, N. Fan, X.C. Ma, J. Li, X.J. Ma, L.Q. Xu, Y.T. Qian: J. Phys. Chem. C, 111 (2007) 16202• DOI:10.1021/jp074305c10.1021/jp074305cSearch in Google Scholar

Received: 2021-05-22
Accepted: 2021-07-23
Published Online: 2021-11-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany