Accessible Unlicensed Requires Authentication Published by De Gruyter November 5, 2021

Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass

Ke Yang, Bing Li, Yanhong Li, Xin Wang and Xinhui Fan

Abstract

The crystallisation kinetics of (Cu46Zr46Al8)100–xGdx (x = 0, 2 and 4 at.%) bulk metallic glasses in non-isothermal and isothermal conditions were studied by differential scanning calorimetry and X-ray diffraction. X-ray diffraction analysis shows that the crystallisation product Cu10Zr7 changes to Cu10Zr7 and Cu2Gd in the presence of Gd in non-isothermal and isothermal conditions. Crystallisation activation energy was calculated using the Kissinger and Ozawa methods in non-isothermal conditions and using the Arrhenius model in isothermal conditions. The results show that Gd addition triggers an increase in the energy barrier during crystallisation. The Johnson–Mehl–Avrami model was employed to analyse the crystallisation kinetics in the isothermal condition. The Avrami exponent, n, for Cu46Zr46Al8 is more than 2.5, which demonstrates that the crystallisation is mainly governed by diffusion-controlled three-dimensional growth with increasing nucleation rate. Comparably, n for (Cu46Zr46Al8)98Gd2 and (Cu46Zr46Al8)96Gd4 is 1.5 < n < 2.5, which suggests that the crystallisation is mainly determined by diffusion-controlled three-dimensional growth with decreasing nucleation rate.


Dr. Ke Yang School of Material and Chemical Engineering Xi’an Technological University Xuefu Middle Road No. 2 Xi’an 710021 P. R. China Tel.: +86-29-86173323 Fax: +86-29-86173323

References

[1] A. Inoue, K. Ohtera, K. Kita, T Masumoto: Jpn. J. Appl. Phys. 27 (1988) L2248. 27.L2248. DOI:10.1143/JJAP10.1143/JJAPSearch in Google Scholar

[2] A. Inoue, T. Zhang, T. Masumoto: Mater. Trans., JIM. 31 (1990) 425. DOI:10.2320/matertrans1989.31.42510.2320/matertrans1989.31.425Search in Google Scholar

[3] N. Nishiyama, K. Amiya, A. Inoue: MRS Proceedings. 806 (2003) 1. DOI:10.1557/PROC-806-MM10.310.1557/PROC-806-MM10.3Search in Google Scholar

[4] P.Y. Li, F.Y. Meng, Y.S. Wang, M.M. Dong, J.T. Shi, P.W. Song: J. Rare Earths. 33 (2015) 972. DOI:10.1016/S1002-0721(14)60514-710.1016/S1002-0721(14)60514-7Search in Google Scholar

[5] C.R.M. Afonso, C. Bolfarini, W.J. Botta, C.S. Kiminami: Int. J. Mater. Res. 2012, 103 (2012) 1096. DOI:10.4028/www.scientific.net/MSF.727-728.46810.4028/www.scientific.net/MSF.727-728.468Search in Google Scholar

[6] S. Mandal, B Sivakumar, A.J. Kailath: Metall Mater Trans A. 2019, 50 (2019) 199. DOI:10.1007/s11665-019-04391-710.1007/s11665-019-04391-7Search in Google Scholar

[7] J.l. Wu, Z. Peng: Applied Physics A. 124 (2018) 632. DOI:10.1007/s00339-018-2057-810.1007/s00339-018-2057-8Search in Google Scholar

[8] L. Deng, B.W. Zhou, H.S. Yang, X. Jiang, B.Y. Jiang: J. Alloys Compd. 632(2015) 429. DOI:10.1007/s11224-006-9032-210.1007/s11224-006-9032-2Search in Google Scholar

[9] K.S. Lee, Y.M. Jo, Y.S. Lee: J. Non-Cryst. Solids. 376 (2013) 145. DOI:10.1016/j.jnoncrysol.2013.05.03610.1016/j.jnoncrysol.2013.05.036Search in Google Scholar

[10] Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen: Acta Mater. 59 (2011) 2928. DOI:10.1016/j.actamat.2011.01.02910.1016/j.actamat.2011.01.029Search in Google Scholar

[11] J. Cui, J.S. Li, J. Wang: J. Alloys Compd. 592(2014) 189. DOI:10.1016/j.jallcom.2014.01.01410.1016/j.jallcom.2014.01.014Search in Google Scholar

[12] K. Yang, X.H. Fan, L. Bing: J. Rare Earths. 35 (2017) 1035. DOI:10.1016/S1002-0721(17)61010-x10.1016/S1002-0721(17)61010-xSearch in Google Scholar

[13] K.G. Prashanth, S. Scudino, K.B. Surreddi, M. Sakaliyska: Mater. Sci. Eng. A. 513 (2009) 279. DOI:10.1016/j.msea.2009.01.07510.1016/j.msea.2009.01.075Search in Google Scholar

[14] H.E. Kissinger: Anal. Chem. 29(1957) 1702. DOI:10.1021/ac60131a04510.1021/ac60131a045Search in Google Scholar

[15] Y.H. Li, C. Yang, L.M. Kang, H.D. Zhao, S.G. Qu: J. Non-Cryst. Solids. 440 (2016) 432. DOI:10.1016/j.jnoncrysol.2015.11.00510.1016/j.jnoncrysol.2015.11.005Search in Google Scholar

[16] J.C. Qiao, J.M. Pelletier: J. Non-Cryst. Solids 357 (2011) 2590. DOI:10.1016/j.jnoncrysol.2010.12.07110.1016/j.jnoncrysol.2010.12.071Search in Google Scholar

[17] A. Inoue, W. Zhang: Mater. Trans. 43 (2002) 2921. DOI:10.1007/s11661-011-1050-z10.1007/s11661-011-1050-zSearch in Google Scholar

[18] F.G. Coury, W.J. Botta, C. Bolfarini, C.S. Kiminami, M.J. Kaufman: J. Non-Cryst. Solids. 79 (2014) 406. DOI:10.1016/j.jnoncrysol.2014.09.04910.1016/j.jnoncrysol.2014.09.049Search in Google Scholar

[19] M. Zhu, J.J. Li, L.J. Yao: Thermochimica Acta. 565 (2013) 132. DOI:10.1016/j.tca.2013.04.01710.1016/j.tca.2013.04.017Search in Google Scholar

[20] X.U. Hong-wei, D.U. Yu-lei, D. Yu: Trans. Nonferrous Met. Soc. China. 22 (2012) 842. DOI:10.1016/S1003-6326(11)61293-410.1016/S1003-6326(11)61293-4Search in Google Scholar

[21] K.S. Lee, J. Eckert, Y.W. Chang: J Non-Cryst. Solids. 353(2007) 2515. DOI:10.1016/j.jnoncrysol.2007.04.03210.1016/j.jnoncrysol.2007.04.032Search in Google Scholar

[22] K. Yang, X.H. Fan, B. Li, Y.H. Li, X. Wang: Vacuum. 187 (2021) 110078. DOI:10.1016/j.vacuum.2021.11007810.1016/j.vacuum.2021.110078Search in Google Scholar

[23] H.S. Shin, Y.J. Jeong, J.H. Ahn: J. Alloys Comp. 434–435 (2007) 40. DOI:10.1016/j.jallcom.2006.08.09510.1016/j.jallcom.2006.08.095Search in Google Scholar

[24] J.H. Han, N. Mattern, U. Vainio, A. Shariq, S.W. Sohn, D.H. Kim, J. Eckert: Acta Mater. 66 (2014) 262. DOI:10.1016/j.actamat.2013.11.01310.1016/j.actamat.2013.11.013Search in Google Scholar

[25] G. Wang, K.C. Chan, X.H. Xu, W.H. Wang: Acta Mater. 56 (2008) 5845. DOI:10.1016/j.actamat.2008.08.00510.1016/j.actamat.2008.08.005Search in Google Scholar

[26] J.S. Blázquez, C.F. Conde, A. Conde: Acta Mater. 53(2005) 2305. DOI:10.1007/1-4020-2965-9-1010.1007/1-4020-2965-9-10Search in Google Scholar

[27] C. Peng, Z.H. Chen, X.Y. Zhao, A.L. Zhang, L.K. Zhang, D. Chen: J. Non. Solids. 405 (2014) 7. DOI:10.1016/j.jnoncrysol.2014.08.03010.1016/j.jnoncrysol.2014.08.030Search in Google Scholar

[28] L.K. Zhang, Z.H. Chen, Q. Zheng: Physica B. 433 (2014) 84. DOI:10.1007/s11431-012-5107-z10.1007/s11431-012-5107-zSearch in Google Scholar

[29] F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer: Int. Mater. Rev. 52 (2007) 193. DOI:10.1179/174328007X16030810.1179/174328007X160308Search in Google Scholar

[30] R. Fernández, W. Carrasco, A. Zúñiga: J. Non-Cryst. Solids. 356 (2010) 1165. DOI:10.1016/j.jnoncrysol.2010.06.01610.1016/j.jnoncrysol.2010.06.016Search in Google Scholar

[31] Z.F. Yao, J.C. Qiao, C. Zhang, J.M. Pelletier, Y. Yao: J. Non-Cryst. Solids. 415 (2015) 42. DOI:10.1016/j.jnoncrysol.2015.02.01710.1016/j.jnoncrysol.2015.02.017Search in Google Scholar

[32] Y.J. Yang, D.W. Xing, J. Shen, J.F. Sun, S.D. Wei: J. Alloys Compd. 106 (2006) 415. DOI:10.1016/j.matlet.2007.04.07310.1016/j.matlet.2007.04.073Search in Google Scholar

[33] A.H. Caia, W.K. An, Y. Luo, T.L. Li, X.S. Liiu: J. Alloys Comp. 490 (2010) 642. DOI:10.1016/j.jallcom.2009.10.12510.1016/j.jallcom.2009.10.125Search in Google Scholar

[34] S. Wei, B. Ding, T. Lei, Z. Hu: Mater. Lett. 37 (1998) 263. DOI:10.1016/S0167-577X(98)00103-710.1016/S0167-577X(98)00103-7Search in Google Scholar

[35] M. Avrami: J. Chem. Phys. 9 (1941) 177. DOI:10.1063/1.175087210.1063/1.1750872Search in Google Scholar

[36] A.A. Soliman, S. Al-Heniti, A. Al-Hajry, M. Al-Assiri, G. Al-Barakati: Thermochim. Acta. 57 (2004) 413. DOI:10.1016/j.tca.2003.11.00110.1016/j.tca.2003.11.001Search in Google Scholar

[37] U. Koster, P. Weiss: J. Non-Cryst. Solids. 17 (1975) 359. DOI:10.1007/3540104402_1010.1007/3540104402_10Search in Google Scholar

[38] A. Inoue, D. Kawase, A.P. Tai, T. Zhang, T. Masumoto: Mater. Sci. Eng. A. 178 (1994) 225. DOI:10.1007/978-3-540-77968-1_1810.1007/978-3-540-77968-1_18Search in Google Scholar

Received: 2021-06-16
Accepted: 2021-08-11
Published Online: 2021-11-05

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany