Abstract
We study the properties of an ODE description of schools of fish (B. Birnir, An ODE model of the motion of pelagic fish, J. Stat. Phys. 128(1/2) (2007), 535–568.) and how they change in the presence of a random acceleration. The model can be reduced to one ODE for the direction of the velocity of a generic fish and another ODE for its speed. These equations contain the mean speed
References
[1] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (6) (Aug 1995), 1226–1229.10.1103/PhysRevLett.75.1226Search in Google Scholar PubMed
[2] B. Birnir, An ODE model of the motion of pelagic fish, J. Stat. Phys. 128 (1/2) (2007), 535–568.10.1007/s10955-007-9292-2Search in Google Scholar
[3] A. Barbaro, B. Einarsson, B. Birnir, S. Sigurðsson, H. Valdimarsson, Ó.K. Pálsson, S. Sveinbjörnsson and Þ. Sigurðsson, Modelling and simulations of the migration of pelagic fish, ICES J. Mar. Sci. 66 (2009), 826–838.10.1093/icesjms/fsp067Search in Google Scholar
[4] A. B. T. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents, Discrete and Continuous Dyn. Syst. Ser B 19 (2014), 1249–1278.10.3934/dcdsb.2014.19.1249Search in Google Scholar
[5] S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Stat. Phys. 63 (3/4) (1991), 613–635.10.1007/BF01029202Search in Google Scholar
[6] H. Chiba and I. Nishikawa, Center manifold reduction for large populations of globally coupled phase oscillators. Chaos 21 (2011), 043103. http://dx.doi.org/10.1063/1.3647317.10.1063/1.3647317Search in Google Scholar PubMed
[7] A. B. T. Barbaro, K. Taylor, P. Trethewey, L. Youseff and B. Birnir, Discrete and continuous models of the behavior of pelagic fish: applications to the capelin, Math. Comput. Simul. 79 (12) (2009), 3397–3414.10.1016/j.matcom.2008.11.018Search in Google Scholar
[8] S. Hubbard, P. Babak, S. Sigurðsson and K. G. Magnússon, A model of the formation of fish schools and migration of fish, Ecol. Modell. 174 (2004), 359–374.10.1016/j.ecolmodel.2003.06.006Search in Google Scholar
[9] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, Lect. Notes Phys. 39 (1975), 420.10.1007/BFb0013365Search in Google Scholar
[10] A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48 (6) (Jun 2003), 988–1001.10.1109/TAC.2003.812781Search in Google Scholar
[11] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77 (2005), 137–185.10.1103/RevModPhys.77.137Search in Google Scholar
[12] R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci. 17 (2007), 309–347.10.1007/s00332-006-0806-xSearch in Google Scholar
[13] H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory and Dyn. Syst. FirstView 8 (2014), 1–73.10.1017/etds.2013.68Search in Google Scholar
[14] S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation be generalized Landau Damping. Phys. Rev. Lett. 68 (18) (1992), 2730–2733.10.1103/PhysRevLett.68.2730Search in Google Scholar
[15] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer, Berlin, 1999.Search in Google Scholar
[16] J. F. Cornejo, Effects of fish movement and environmental variability in the design and success of a marine protected area, PhD thesis, University of California, Santa Barbara, 2016.Search in Google Scholar
[17] A. Huth and C. Wissel, The simulation of fish schools in comparison with experimental data, Ecol. Modell. 75 (1994), 135–146.10.1016/0304-3800(94)90013-2Search in Google Scholar
[18] I. Aoki, A simulation study on the schooling mechanism in fish, Bull. Jpn. Soc. Sci. Fish. 48 (8) (1982), 1081–1088.10.2331/suisan.48.1081Search in Google Scholar
[19] H. Scott Gordon, The economic theory of a common-property resource: the fishery, J. Polit. Econ. 62 (2) (1954), 124–142.10.1086/257497Search in Google Scholar
[20] R. Hilborn, F. Micheli and G. A De Leo, Integrating marine protected areas with catch regulation, Can. J. Fish. Aquat. Sci. 63 (3) (2006), 642–649.10.1139/f05-243Search in Google Scholar
[21] E. Ott and T. M. Antonsen, Long time evolution of phase oscillator systems, Chaos 19 (2) (2009), 023117.10.1063/1.3136851Search in Google Scholar PubMed
[22] E. Ott and T. M. Antonsen, Long time evolution of phase oscillator systems, Chaos 21 (2) (2011), 025112.10.1063/1.3574931Search in Google Scholar PubMed
[23] R. E. Mirollo, The asymptotic behavior of the order parameter for the infinite-n kuramoto model, Chaos 22 (2012), 043118.10.1063/1.4766596Search in Google Scholar PubMed
[24] B. Birnir, Global attractors and basic turbulence, in: K. M. Spatschek and F. G. Mertens, editors,Nonlinear coherent structures in physics and biology, volume 329, NATO ASI Series, NewYork, 1994.10.1007/978-1-4899-1343-2_51Search in Google Scholar
[25] J. Milnor, On the concept of attractor, Commun. Math. Phys. 99 (1985), 177–195.10.1007/978-0-387-21830-4_15Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston