Abstract
The accurate prediction of self-aerated flow is not always easy to obtain, particularly if the computational performance is the main concern. Two-fluid formulation is suitable to simulate the dispersed air in a continuous water phase (e.g. bubbly flows) in a fine mesh, whereas the interface tracking methods are used for sharp interfaces with two continuous and contiguous phases (e.g. free-surface flows). Several approaches have emerged to combine both methods; however all found a gap in the transition between resolved and unresolved scales of air at the interface. Including a source term that predicts the self-aeration process is viewed as a promising step to overcome such difficulty. In this work, we added to the volume-of-fluid formulation an extra advection-diffusion equation connected to a source of air at the free surface to simulate the dispersed bubble phase. One-way coupling and two-way coupling versions of this model are tested along with sensitivity tests to show the accuracy of the new source term that does not require calibration. The location of the aeration is analysed and investigated. Results are obtained in terms of free-surface flow depths, air–concentration profiles and velocity fields and compared to experimental data acquired in a scaled stepped spillway model with good agreement. The free-surface given by the air-entrainment model is in good agreement in both non-aerated and aerated zone of the spillway.
Funding statement: This study had the support of FCT (Portuguese Foundation for Science and Technology) through the Projects UID/MAR/04292/2013 and Grant SFRH/BD/85783/2012, financed by MEC (Portuguese Ministry of Education and Science) and FSE (European Social Fund), under the programs POPH/QREN (Human Potential Operational Programme from National Strategic Reference Framework) and POCH (Human Capital Operational Programme) from Portugal2020.
Acknowledgements
Pedro Lopes would like to acknowledge the facilities provided during a period of 3 months in 2014 as visiting student at FH-Aachen, Germany, from which the experimental results were obtained. All the numerical results here showed were performed in the Centaurus Cluster of the Laboratory for Advanced Computing of University of Coimbra, Portugal.
References
[1] Deshpande S. S., Trujillo M. F., Wu X. and Chahine G., Computational and experimental characterization of a liquid jet plunging into a quiescent pool at shallow inclination, Int. J. Heat Fluid Flow. 34 (2012), 1–14. http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.01.011 doi:10.1016/j.ijheatfluidflow.2012.01.011.Search in Google Scholar
[2] Qu X., Khezzar L., Danciu D., Labois M. and Lakehal D., Characterization of plunging liquid jets: A combined experimental and numerical investigation, Int. J. Multiphase Flow. 37 (7) (2011), 722–731. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2011.02.006 doi:10.1016/j.ijmultiphaseflow.2011.02.006.Search in Google Scholar
[3] Cerne G., S. Petelin and Tiselj I., Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow, J. Comput. Phy. 171 (2) (2001), 776–804. http://dx.doi.org/10.1006/jcph.2001.6810 doi:10.1006/jcph.2001.6810.Search in Google Scholar
[4] Yan K. and Che D., A coupled model for simulation of the gas - liquid two-phase flow with complex flow patterns, Int. J. Multiphase Flow. 36 (4) (2010), 333–348. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.11.007 doi:10.1016/j.ijmultiphaseflow.2009.11.007.Search in Google Scholar
[5] Hänsch S., D. Lucas, E. Krepper and Höhne T., A multi-field two-fluid concept for transitions between different scales of interfacial structures, Int. J. Multiphase Flow. 47 (2012), 171–182. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.07.007 doi:10.1016/j.ijmultiphaseflow.2012.07.007.Search in Google Scholar
[6] Hänsch S., Lucas D., Höhne T. and Krepper E., Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle, Nucl. Eng. Des. 279 (2014), 171–181. http://dx.doi.org/10.1016/j.nucengdes.2014.02.006 doi:10.1016/j.nucengdes.2014.02.006.Search in Google Scholar
[7] Wardle K. E. and Weller H. G., Hybrid Multiphase CFD Solver for Coupled Dispersed / Segregated Flows in Liquid-Liquid Extraction, Int. J. Chem. Eng. (2013) (Article ID 128936). http://dx.doi.org/10.1155/2013/128936 doi:10.1155/2013/128936.Search in Google Scholar
[8] Shonibare O. Y. and Wardle K. E., Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid – VOF Multiphase CFD Solver, Int. J. Chem. Eng. 2015 (Article ID 925639) (2015) 14. http://dx.doi.org/10.1155/2015/925639 doi:10.1155/2015/925639.Search in Google Scholar
[9] Hirt C. W., Modeling Turbulent Entrainment of Air at a Free Surface, Tech. rep. (2003).Search in Google Scholar
[10] Moraga F. J., P. Carrica M., D. Drew A. and Lahey R. T., A sub-grid air entrainment model for breaking bow waves and naval surface ships, Comput. Fluids. 37 (3) (2008), 281–298. http://dx.doi.org/10.1016/j.compfluid.2007.06.003 doi:10.1016/j.compfluid.2007.06.003.Search in Google Scholar
[11] Ma J., A. Oberai, D. Drew, R. Lahey and Moraga F., A quantitative sub-grid air entrainment model for bubbly flows – plunging jets, Comput. Fluids 39 (1) (2010), 77–86. http://dx.doi.org/10.1016/j.compfluid.2009.07.004 doi:10.1016/j.compfluid.2009.07.004.Search in Google Scholar
[12] Sene K. J., Air entrainment by plunging jets, Chem. Eng. Sci. 43 (10) (1988), 2615–2623. http://dx.doi.org/10.1016/0009-2509(88)80005-8} doi:10.1016/0009-2509(88)80005-8.Search in Google Scholar
[13] Ervine D. A. and Falvey H. T., Behaviour of turbulent water jets in the atmosphere and in plunge pools., Ice Proc. 83 (1) (1987), 295–314. http://dx.doi.org/10.1680/iicep.1987.353 doi:10.1680/iicep.1987.353.Search in Google Scholar
[14] Ma J., Oberai A. A., Drew D. A., Lahey R. T. and Hyman M. C., A comprehensive sub-grid air entrainment model for RaNS modeling of free-surface bubbly flows, J. Comput. Multiphase Flow. 3 (1) (2011), 41–56. http://dx.doi.org/10.1260/1757-482X.3.1.41 doi:10.1260/1757-482X.3.1.41.Search in Google Scholar
[15] Ma J., A. Oberai A., M. Hyman C., D. Drew A. and Lahey R. T., Two-Fluid Modeling of Bubbly Flows around Surface Ships Using a Phenomenological Subgrid Air Entrainment Model, Comput. Fluids 52 (1) (2011), 50–57. http://dx.doi.org/10.1016/j.compfluid.2011.08.015 doi:10.1016/j.compfluid.2011.08.015.Search in Google Scholar
[16] Ma J., A. Oberai A., R. Lahey T. and Drew D. A., Modeling Entrainment Air and Transport in a Hydraulic Jump using Two-Fluid RANS and DES Turbulence Models, Heat Mass Transfer. 47 (8) (2011), 911–919. http://dx.doi.org/10.1007/s00231-011-0867-8 doi:10.1007/s00231-011-0867-8.Search in Google Scholar
[17] Shi F., Kirby J. T. and Ma G., Modeling quiescent phase transport of air bubbles induced by breaking waves, Ocean Model. 35 (1–2) (2010), 105–117. http://dx.doi.org/10.1016/j.ocemod.2010.07.002 doi:10.1016/j.ocemod.2010.07.002.Search in Google Scholar
[18] airinterfoam, https://openfoamwiki.net/index.php/Contrib/airInterFoam.Search in Google Scholar
[19] Hirt C. W. and Nichols B. D., Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phy. 39 (1981), 201–225. http://dx.doi.org/10.1016/0021-9991(81)90145-5 doi:10.1016/0021-9991(81)90145-5.Search in Google Scholar
[20] Weller H., A new approach to VOF-based interface capturing methods for incompressible and compressible flows, Report TR/HGW/04, OpenCFD Ltd.Search in Google Scholar
[21] Brackbill J. U., Kothe D. B. and Zemach C., A continuum method for modeling surface tension, Journal of Computational Physics 100 (1991), 335–354. http://dx.doi.org/10.1016/0021-9991(92)90240-Y doi:10.1016/0021-9991(92)90240-Y.Search in Google Scholar
[22] Menter F. R., Zonal two-equation k-ω turbulence model for aerodynamic flows, in: AIAA 24th Fluid Dynamics Conference, Orlando, Florida, 1993. http://dx.doi.org/10.2514/6.1993-2906 doi:10.2514/6.1993-2906.Search in Google Scholar
[23] Clift R., Grace J. R. and Weber M. E., Bubbles, Drops and Particles, New York, USA, 1978.Search in Google Scholar
[24] Ervine D. A., McKeogh E. and Elsawy E. M., Effect of turbulence intensity on the rate of air entrainment by plunging water jets, Proc. Inst. Civil Eng. Part2 69 (1980), 425–445.Search in Google Scholar
[25] Bombardelli F. A., I. Meireles and Matos J., Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways, Environ. Fluid Mech. 11 (3) (2010), 263–288. http://dx.doi.org/10.1007/s10652-010-9188-6 doi:10.1007/s10652-010-9188-6.Search in Google Scholar
[26] Hirt C. W., Modeling Turbulent Entrainment of Air at a Free Surface, Tech. rep. (2012).Search in Google Scholar
[27] Lopes P., Tabor G., Carvalho R. F. and Leandro J., Explicit calculation of natural aeration using a volume-of-fluid model, Appl. Math. Modell. 40 (17–18) (2016), 7504–7515. http://dx.doi.org/10.1016/j.apm.2016.03.033 doi:10.1016/j.apm.2016.03.033.Search in Google Scholar
[28] Chanson H., Air Bubble Entrainment In Free-Surface Turbulent Shear Flows, Academic Press, London, UK, 1997.10.1016/B978-012168110-4/50006-0Search in Google Scholar
[29] Lopes P., J. Leandro, R. Carvalho F. and Bung D. B., Alternating skimming flow over a stepped spillway, Environ. Fluid Mech. http://dx.doi.org/10.1007/s10652-016-9484-x} {doi:10.1007/s10652-016-9484-x.Search in Google Scholar
[30] Ryu Y., Chang K. and Lim H., Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater, Meas. Sci. Technol. 16 (10) (2005), 1945–1953. http://dx.doi.org/10.1088/0957-0233/16/10/009 doi:10.1088/0957-0233/16/10/009.Search in Google Scholar
[31] Versteeg H. K. and Malalasekera W., An Introduction to Computational Fluid Dynamics – The Finite Volume Method, 2nd Edition, Pearson Education, 2007.Search in Google Scholar
[32] Celik I. B., Ghia U., Roache P. J. and Freitas C. J., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Eng. 130 (7). http://dx.doi.org/10.1115/1.2960953 doi:10.1115/1.2960953.Search in Google Scholar
[33] Bung D. B., Developing flow in skimming flow regime on embankment stepped spillways, J. Hydraulic Res. 49 (5) (2011), 639–648. http://dx.doi.org/10.1080/00221686.2011.584372 doi:10.1080/00221686.2011.584372.Search in Google Scholar
[34] Nash J. E. and Sutcliffe J. V., River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol. 10 (3) (1970), 282–290. http://dx.doi.org/10.1016/0022-1694(70)90255-6 doi:10.1016/0022-1694(70)90255-6.Search in Google Scholar
[35] Pearson K., Mathematical contributions to the theory of evolution. III. Regression, Heredity and Panmixia, Philos. Trans. R. Soc. London 187 (1986), 253–318. http://dx.doi.org/10.1098/rsta.1896.0007 doi:10.1098/rsta.1896.0007.Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston