Accessible Unlicensed Requires Authentication Published online by De Gruyter November 24, 2021

Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces

Chibueze C. Okeke, Lateef O. Jolaoso and Yekini Shehu ORCID logo

Abstract

In this paper, we propose two inertial accelerated algorithms which do not require prior knowledge of operator norm for solving split feasibility problem with multiple output sets in real Hilbert spaces. We prove weak and strong convergence results for approximating the solution of the considered problem under certain mild conditions. We also give some numerical examples to demonstrate the performance and efficiency of our proposed algorithms over some existing related algorithms in the literature.

MSC 2010: 47H09; 47H10; 49J20; 49J40

Corresponding author: Yekini Shehu, Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China, E-mail:

Acknowledgments

This paper is dedicated to the loving memory of late Professor Charles Ejike Chidume (1947–2021).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numer. Algorithm., vol. 8, nos. 2–4, pp. 221–239, 1994. https://doi.org/10.1007/bf02142692. Search in Google Scholar

[2] C. Byrne, “Iterative oblique projection onto convex sets and split feasibility,” Inverse Probl., vol. 18, no. 2, pp. 441–453, 2002. https://doi.org/10.1088/0266-5611/18/2/310. Search in Google Scholar

[3] C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Probl., vol. 20, no. 1, pp. 103–120, 2004. https://doi.org/10.1088/0266-5611/20/1/006. Search in Google Scholar

[4] C. Byrne, Y. Censor, A. Gibali, and S. Reich, “The split common null point problem,” J. Nonlinear Convex Anal., vol. 13, no. 4, pp. 759–775, 2012. Search in Google Scholar

[5] Y. Censor, A. Gibali, and S. Reich, “Algorithms for split variational inequality problems,” Numer. Algorithm., vol. 59, no. 2, pp. 301–323, 2012. https://doi.org/10.1007/s11075-011-9490-5. Search in Google Scholar

[6] V. Dadashi, “Shrinking projection algorithms for split common null point problem,” Bull. Aust. Math. Soc., vol. 96, no. 2, pp. 299–306, 2017. https://doi.org/10.1017/s000497271700017x. Search in Google Scholar

[7] G. Z. Eskandani, M. Raeisi, and T. M. Rassias, “A hybrid extragradient method for solving pseudomonotone equilibrium problem using Bregman distance,” J. Fixed Point Theory Appl., vol. 20, no. 3, p. 27, 2018. https://doi.org/10.1007/s11784-018-0611-9. Search in Google Scholar

[8] F. U. Ogbuisi, “The projection method with inertial extrapolation for solving split equilibrium problems in Hilbert spaces,” Appl. Set-Valued Anal. Optim., vol. 3, pp. 239–255, 2021. Search in Google Scholar

[9] F. U. Ogbuisi, O. S. Iyiola, J. M. T. Ngnotchouye, and T. M. M. Shumba, “On inertial type self-adaptive iterative algorithms for solving pseudomonotone equilibrium problems and fixed point problems,” J. Nonlinear Funct. Anal., vol. 2021, 2021, Art no. 4. Search in Google Scholar

[10] S. Takahashi and W. Takahashi, “The split common null point problem and the shrinking projection method in Banach spaces,” Optimization, vol. 65, no. 2, pp. 281–287, 2016. https://doi.org/10.1080/02331934.2015.1020943. Search in Google Scholar

[11] W. Takahashi, “The split feasibility problem and the shrinking projection in Banach spaces,” J. Nonlinear Convex Anal., vol. 16, no. 7, pp. 1449–1459, 2015. Search in Google Scholar

[12] W. Takahashi, “The split common null point problem in Banach spaces,” Arch. Math., vol. 104, no. 4, pp. 357–365, 2015. https://doi.org/10.1007/s00013-015-0738-5. Search in Google Scholar

[13] F. Wang and H. K. Xu, “Cyclic algorithms for split feasibility problems in Hilbert spaces,” Nonlinear Anal., vol. 74, no. 12, pp. 4105–4111, 2011. https://doi.org/10.1016/j.na.2011.03.044. Search in Google Scholar

[14] Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Probl., vol. 20, no. 4, pp. 1261–1266, 2004. https://doi.org/10.1088/0266-5611/20/4/014. Search in Google Scholar

[15] H. K. Xu, “A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem,” Inverse Probl., vol. 22, no. 6, pp. 2021–2034, 2006. https://doi.org/10.1088/0266-5611/22/6/007. Search in Google Scholar

[16] H. K. Xu, “Iterative methods for split feasibility problem in infinite dimensional Hilbert spaces,” Inverse Probl., vol. 26, no. 10, pp. 105018, 2010. https://doi.org/10.1088/0266-5611/26/10/105018. Search in Google Scholar

[17] E. Masad and S. Reich, “A note on the multiple-set split convex feasibility problem in Hilbert space,” J. Nonlinear Convex Anal., vol. 8, no. 3, pp. 367–371, 2007. Search in Google Scholar

[18] Y. Censor and A. Segal, “The split common fixed point problem for directed operators,” J. Convex Anal., vol. 16, no. 2, pp. 587–600, 2009. https://doi.org/10.1111/j.1475-3995.2008.00684.x. Search in Google Scholar

[19] A. Moudafi, “The split common fixed point problem for demicontractive mappings,” Inverse Probl., vol. 26, no. 5, p. 6, 2010. https://doi.org/10.1088/0266-5611/26/5/055007. Search in Google Scholar

[20] M. Abbas and H. Iqbal, “Two Inertial extragradient viscosity algorithms for solving variational inequality and fixed point problems,” J. Nonlinear Var. Anal., vol. 4, pp. 377–398, 2020. Search in Google Scholar

[21] M. T. Tuyen, “A strong convergence theorem for the split common null point problem in Banach spaces,” Appl. Math. Optim., vol. 79, no. 1, pp. 207–227, 2019. https://doi.org/10.1007/s00245-017-9427-z. Search in Google Scholar

[22] M. T. Tuyen, N. S. Ha, and N. T. T. Thuy, “A shrinking projection method for solving the split common null point problem in Banach spaces,” Numer. Algorithm., vol. 81, no. 3, pp. 813–832, 2019. https://doi.org/10.1007/s11075-018-0572-5. Search in Google Scholar

[23] M. T. Tuyen and N. S. Ha, “A strong convergence theorem for solving the split feasibility and fixed point problems in Banach spaces,” J. Fixed Point Theory Appl., vol. 20, no. 4, p. 17, 2018. https://doi.org/10.1007/s11784-018-0622-6. Search in Google Scholar

[24] J. Wang, Y. Hu, C. Li, and J.-C. Yao, “Linear convergence of CQ algorithms and applications in gene regulatory network inference,” Inverse Probl., vol. 33, no. 5, p. 25, 2017. https://doi.org/10.1088/1361-6420/aa6699. Search in Google Scholar

[25] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, “A unified approach for inversion problems in intensity modulated radiation therapy,” Phys. Med. Biol., vol. 51, pp. 2353–2365, 2006. https://doi.org/10.1088/0031-9155/51/10/001. Search in Google Scholar

[26] S. Penfold, R. Zalas, M. Casiraghi, M. Brooke, Y. Censor, and R. Schulte, “Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy,” Phys. Med. Biol., vol. 62, p. 3599, 2017. https://doi.org/10.1088/1361-6560/aa602b. Search in Google Scholar

[27] H. He and H.-K. Xu, “Splitting methods for split feasibility problems with application to Dantzig selectors,” Inverse Probl., vol. 33, p. 28, 2017. https://doi.org/10.1088/1361-6420/aa5ec5. Search in Google Scholar

[28] S. Reich, M. T. Tuyen, and T. N. H. Mai, “The split feasibility problem with multiple output sets in Hilbert spaces,” Optim. Lett., vol. 14, pp. 2335–2353, 2020. https://doi.org/10.1007/s11590-020-01555-6. Search in Google Scholar

[29] S. Reich and T. M. Tuyen, “Iterative methods for solving the generalized split common null point problem in Hilbert spaces,” Optimization, vol. 69, pp. 1013–1038, 2020. Search in Google Scholar

[30] S. Reich, T. M. Tuyen, and M. T. N. Ha, “An optimization approach to solving the split feasibility problem in Hilbert spaces,” J. Global Optim., vol. 79, pp. 837–852, 2021. https://doi.org/10.1007/s10898-020-00964-2. Search in Google Scholar

[31] F. Alvarez and H. Attouch, “An inertial proximal method for maximal monotone operator via discretization of nonlinear oscillator with damping,” Set-Valued Anal., vol. 9, nos. 1–2, pp. 3–11, 2001. https://doi.org/10.1023/a:1011253113155. Search in Google Scholar

[32] F. Alvarez, “On the minimization of a second other dissipative dynamical system in Hilbert space,” SIAM J. Control Optim., vol. 38, no. 4, pp. 1102–1119, 2000. https://doi.org/10.1137/s0363012998335802. Search in Google Scholar

[33] F. Alvarez, “Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space,” SIAM J. Optim., vol. 14, no. 3, pp. 773–782, 2003. Search in Google Scholar

[34] P. E. Maingé, “Convergence theorems for inertial KM-type algorithms,” J. Comput. Appl. Math., vol. 219, no. 1, pp. 223–236, 2008. https://doi.org/10.1016/j.cam.2007.07.021. Search in Google Scholar

[35] H. Attouch, J. Peypouquet, and P. Redont, “A dynamical approach to an inertial forward-backward algorithm for convex minimization,” SIAM J. Optim., vol. 24, no. 1, pp. 232–256, 2014. https://doi.org/10.1137/130910294. Search in Google Scholar

[36] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183–202, 2009. https://doi.org/10.1137/080716542. Search in Google Scholar

[37] R. I. Bot and E. R. Csetnek, “An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems,” Numer. Algorithm., vol. 71, no. 3, pp. 519–540, 2016. Search in Google Scholar

[38] R. I. Bot and E. R. Csetnek, “An inertial alternating direction method of multipliers,” Minimax Theory Appl., vol. 1, no. 1, pp. 29–49, 2016. Search in Google Scholar

[39] R. I. Bot and E. R. Csetnek, “A hybrid proximal-extragradient algorithm with inertial effects,” Numer. Funct. Anal. Optim., vol. 36, no. 8, pp. 951–963, 2015. Search in Google Scholar

[40] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics, 83, New York, Marcel Dekker, Inc., 1984, p. ix+170. Search in Google Scholar

[41] K. Gobel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, 28, Cambridge, Cambridge University Press, 1990, p. viii+244. Search in Google Scholar

[42] P. E. Maingé, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization,” Set-Valued Anal., vol. 16, nos. 7–8, pp. 899–912, 2008. https://doi.org/10.1007/s11228-008-0102-z. Search in Google Scholar

[43] H. K. Xu, “Iterative algorithm for nonlinear operators,” J. Lond. Math. Soc., vol. 66, no. 1, pp. 240–256, 2002. https://doi.org/10.1112/s0024610702003332. Search in Google Scholar

[44] H. H. Bauschke and A. P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, New York, Springer, 2011. Search in Google Scholar

[45] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Am. Math. Soc., vol. 73, pp. 591–597, 1967. https://doi.org/10.1090/s0002-9904-1967-11761-0. Search in Google Scholar

[46] J. Peypouquet, Convex Optimization in Normed Spaces. Springer Briefs in Optimization, London, Springer, 2015. Search in Google Scholar

Received: 2021-03-19
Accepted: 2021-11-04
Published Online: 2021-11-24

© 2021 Walter de Gruyter GmbH, Berlin/Boston