Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 28, 2022

Injection Molding of Reinforced Thermosets

Fiber Orientation Observations and Flow calculation

  • R. Blanc , S. Philipon , M. Vincent , J. F. Agassant , H. Alglave , R. Müller and D. Froelich


The orientation of glass fibers (initial length 20 mm) and the mold filling of reinforced unsaturated polyester compounds have been studied. Observations of the fiber orientation have been made in three molds where shear and elongational flows occur in variable ways. A part of the fibers are split and broken into filaments. Reinforcement can be more or less buckled. A thin skin layer without fibers is observed. The great thickness of a core region with an orientation perpendicular to the flow direction shows the importance of negative elongational flows. Efficiency of positive elongational flows to suppress buckling and to give a well flow aligned orientation is also observed. On the contrary the efficiency of shear flows is limited compared to elongational flows. The incidence of injection conditions on the pressure inside a rectangular plaque has been studied both experimentally and theoretically. Experimental difficulties due to the material heterogeneity leads to measure viscosity data of the uncured material on a special capillary rheometer and rheological kinetic data on a simplified compound. Numerical results are in good agreement with experimental measurements. For instance the effect of crosslinking which leads to a pressure rise at low flow rate or high mold temperature is well predicted.

* Mail address: Dr. J. F. Agassant, Ecole Nationale Supérieure des Mines de Paris, CEMEF, rue Claude Daunesse, Sophia-Antipolis, 06560 Valbonne, France


This study was supported by the French Ministere de II'ndustrie, by PSA Etudes et Recherches (France). Materials were supplied by CdF-Chimie Résines (France).


x, r

flow direction


thickness direction






mold temperature


BMC temperature in the nozzle of the injection machine




initial viscosity


rheological kinetic term


isothermal rheological kinetic


half thickness of the mold


half thickness at the entrance of the mold


flow front position

γ ˙

shear rate


degree of cure






time increment


flow direction velocity field component


transverse velocity field component


specific heat of BMC


thermal conductivity of BMC


thermal conductivity of the mold steel


1 Vincent, M.: Thèse de docteur ingénier, Ecole des Mines de Paris (1984)Search in Google Scholar

2 Darlington, M. W.; Mc Ginley, P. L.: J. of Mat. Sci. 10, p. 906 (1975)10.1007/BF01163086Search in Google Scholar

3 Darlington, M. W.; Mc Ginley, P. L.; Smith, G. R.: J. of Mat. Sci. 11, p. 877 (1976)10.1007/BF00542305Search in Google Scholar

4 Darlington, M. W.; Gladwell, B. K.; Smith, G. R.: Polymer, 18, p. 1269 (1977)10.1016/0032-3861(77)90292-0Search in Google Scholar

5 Goldsmith, H. L.; Mason, S. G.: in: Rheology: Theory and Applications. Eirich, F. R. (Ed.), Academic Press, New York, pp. 85/250 (1967)10.1016/B978-1-4832-2941-6.50008-8Search in Google Scholar

6 Jeffery, G. B.: Proc. Roy. Soc. A 102, p. 161 (1922)10.1098/rspa.1922.0078Search in Google Scholar

7 Owen, M. J.; Whybrew, K.: Plast. Rubber 1, p.6 (1976)Search in Google Scholar

8 Owen, M. J.; Thomas, D. H.; Found, M. S.: Flow, fibre orientation and mechanical property relationships in polyester DMC, 33 rd SPI Conf. (1978)Search in Google Scholar

9 Roller, M. B.: Polym. Eng. Sci. 15, p. 406 (1975)10.1002/pen.760150603Search in Google Scholar

10 Kamal, M. R.; Ryan, M. E.: Polym. Eng. Sci. 20, p. 859 (1980)10.1002/pen.760201305Search in Google Scholar

11 White, R. P: Jr., Polym. Eng. Sci. 14, p. 50 (1974)10.1002/pen.760140109Search in Google Scholar

12 Kamal, M. R.; Sourour, S.; Ryan, M.: 31st ANTEC, p. 187/191 (1973)Search in Google Scholar

13 Lee, L. J.: Polym. Eng. Sci. 21, p.483 (1981)10.1002/pen.760210808Search in Google Scholar

14 Fan, J. D.; Marinelli, J. M.; Lee, L. J.: Polym. Composites 7, p.239 (1986)10.1002/pc.750070407Search in Google Scholar

15 Macosko, C. W.: British Polymer Journal 17, p.239 (1985)10.1002/pi.4980170228Search in Google Scholar

16 Gonzales-Romero, V. M.; Macosko, C. W.: J. of Rheol. 29, p. 259 (1985)10.1122/1.549790Search in Google Scholar

17 Kamal, M. R.; Ryan, M. E.:IX International Congress on Rheology, Mexico, p. 85/86 (1984)Search in Google Scholar

18 Seaki, J.; Kaneda, A.; Tanaka, M.; Tsuchiya, K.: TX International Congress on Rheology, Mexico, p. 679/685 (1984)Search in Google Scholar

19 Manzione, L. T: Polym. Eng. Sci. 21, p. 1234 (1981)10.1002/pen.760211809Search in Google Scholar

20 Domine, J. D., Gogos, C. G.: Polym. Eng. Sci. 20, p. 847 (1980)10.1002/pen.760201304Search in Google Scholar

21 Villemaire, J. P, Agassant, J. F: Polymer Process Engineering, 1, p.223(1984)Search in Google Scholar

22 Villemaire, J. P: Interpolation et Extrapolation des Courbes de Viscosité, Rapport interne Ecole des Mines de Paris (1986)Search in Google Scholar

23 Alles, H.: Thèse de doctorat, Ecole des Mines de Paris, (1986)Search in Google Scholar

24 Philipon, S., Alles, H., Vincent, M., Agassant, J. F.: Numerical Methods in Industrial Forming Processes. Mattiason, K., Samuelson, A., Wood, R.D., Zienkiewics, O.C. (Eds.), Balkema, Rotterdam, p. 177/182(1986)Search in Google Scholar

25 Mavridis, H., Hrymak, A.N., Vlachopoulos, J.: 44th, ANTEC, p. 103/106 (1986)Search in Google Scholar

Published Online: 2022-02-28
Published in Print: 2022-02-28

© 1987 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 7.6.2023 from
Scroll to top button