Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2021

Influence of Solid TAIC on Crosslinking LLDPE by Electron Beam Radiation

  • L.-Y. Gu EMAIL logo , Y. Lei , M.-G. Chen , J.-X. Li and Z. Zheng


In this work, solid triallyl isocyanurate (TAIC) has been fabricated and used as the crosslinking sensitizer for linear low density polyethylene (LLDPE) crosslinking application. First, 0 phr, 1.5 phr, 3.0 phr, 4.5 phr and 6.0 phr solid TAIC have been added into the LLDPE to study the radiation crosslinking results. The resulting samples are measured by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), etc. The results reveal that the crystallinity, melt point, elongation and volume resistivity decrease when the content of solid TAIC increases in LLDPE from 0 phr to 6.0 phr. However, adding a proper amount of solid TAIC (3.0 phr) can improve the crosslinking degree and tensile strength of LLDPE. Finally, the space charge distribution of the samples has been measured, and the possible mechanism of solid TAIC that affects the LLDPE electrical properties is proposed.

* Mail address: Longyan Gu, Institute of Surface Micro and Nano Materials, Xuchang University, No. 88, Bayi Road, Xuchang City, Henan Province, PRC, 461000


Bhattacharya, A., “Radiation and Industrial Polymers”, Prog. Polym. Sci., 25, 371–401 (2000), DOI:10.1016/S0079-6700(00)00009-510.1016/S0079-6700(00)00009-5Search in Google Scholar

Benítez, A., Sánchez, J. J., Arnal, M. L., Müller, A. J., Rodríguez, O. and Morales, G., “Abiotic Degradation of LDPE and LLDPE Formulated with a Pro-Oxidant Additive”, Polym. Degrad. Stab., 98, 490–501 (2013), DOI:10.1016/j.polymdegradstab.2012.12.01110.1016/j.polymdegradstab.2012.12.011Search in Google Scholar

Farley, J. M., Meka, P., “Heat Sealing of Semicrystalline Polymer Films. III. Effect of Corona Discharge Treatment of LLDPE“, J. Appl. Polym. Sci., 51, 121–131 (1994), DOI:10.1002/app.1994.07051011310.1002/app.1994.070510113Search in Google Scholar

Gaylord, N. G., Mehta, R., Mohan, D. R. and Kumar, V., “Maleation of Linear Low-Density Polyethylene by Reactive Processing”, J. Appl. Polym. Sci., 44, 1941–1949 (1992), DOI:10.1002/app.1992.07044110910.1002/app.1992.070441109Search in Google Scholar

Greco, N., Berend, K., “Polyethylene Liner Dislocation of Fixed-Bearing Medial Oxinium Unicompartmental Arthroplasty with Severe Metallosis”, The Knee Journal, 25, 341–345 (2018), PMid:29525546; DOI:10.1016/j.knee.2018.01.00410.1016/j.knee.2018.01.004Search in Google Scholar

Gheysari, D., Behjat, A., “Radiation Cross Linking of LDPE and HDPE with 5 and 10 MeV Electron Beams”, Eur. Polym. J., 37, 2011–2016 (2001), DOI:10.1016/S0014-3057(01)00084-210.1016/S0014-3057(01)00084-2Search in Google Scholar

Hyslop, D. K., Parent, J. S., “Dynamics and Yields of AOTEMPO-Mediated Polyolefin Cross-Linking”, Polymer, 54, 84–89 (2013), DOI:10.1016/j.polymer.2012.11.01310.1016/j.polymer.2012.11.013Search in Google Scholar

Hulse, G. E., Kersting, R. J. and Warfel, D. R., “Chemistry of Dicumyl Peroxide-Induced Cross linking of Linear Polyethylene”, J. Polym. Sci., Part A: Polym. Chem., 19, 655–667 (1981), 170190305, DOI:10.1002/pol.198110.1002/pol.1981Search in Google Scholar

Huthmacher, K., Most, D., “Cyanuric Acid and Cyanuric Chloride”, Ullmann’s Encyclopedia of Industrial Chemistry, 11, 1–21, Wiley-VCH Verlag, Weinheim (2012), DOI:10.1002/14356007.a08_19110.1002/14356007.a08_191Search in Google Scholar

Janostik, V., Hýlová, L., Manas, D., Manas, M., Gajzlerova, L., Mizera, A. and Stanek, M., “Local Mechanical Properties of Irradiated Cross-Linked Polypropylene”, Mater. Technol., 52, 31–33 (2018), DOI:10.17222/mit.2017.09710.17222/mit.2017.097Search in Google Scholar

Kuan, H. C., Kuan, J. F., Ma, C. C. and Huang, J. M., “Thermal and Mechanical Properties of Silane-Grafted Water Crosslinked Polyethylene”, J. Appl. Polym. Sci., 96, 2383–2391 (2005), DOI:10.1002/app.2169410.1002/app.21694Search in Google Scholar

Khan, F., Kwek, D., Kronfli, E. and Ahmad, S. R., “Laser-Induced Cross Linking of Ultra-Low and High-Density Polyethylene, Macromol. Rapid Commun., 28, 158–163 (2007), DOI:10.1002/marc.20060061710.1002/marc.200600617Search in Google Scholar

Moly, K. A., Radusch, H. J., Androsh, R., Bhagawan, S. S. and Thomas, S., “Nonisothermal Crystallisation, Melting Behavior and Wide Angle X-Ray Scattering Investigations on Linear Low Density Polyethylene (LLDPE)/Ethylene Vinyl Acetate (EVA) Blends: Effects of Compatibilisation and Dynamic Cross Linking”, Eur. Polym. J., 41, 1410–1419 (2005), DOI:10.1016/j.eurpolymj.2004.10.01610.1016/j.eurpolymj.2004.10.016Search in Google Scholar

Moly, K. A., Bhagawan, S. S. and Thomas, S., “Melt Elasticity Behaviour and Extrudate Characteristics of LLDPE/EVA Blends: Effect of Blend Ratio, Compatibilisation and Dynamic Cross-Linking”, Mater. Lett., 53, 346–352 (2002), DOI:10.1016/s0167-577x(01)00505-510.1016/s0167-577x(01)00505-5Search in Google Scholar

Manas, D., Manas, M., Chvatalova, L., Stanek, M., Bednarik, M. and Mizera, A., “Effect of Low Doses Beta Irradiation on Thermal, Micro and Macro Mechanical Properties of Irradiated Polypropylene”, Radiat. Phys. Chem., 102, 171–177 (2014), 002, DOI:10.1016/j.radphyschem.2014.0510.1016/j.radphyschem.2014.05Search in Google Scholar

Nuria, G. H., Post, W., José, M. L., José, L. V., Luis, M. L. and Santiago, J. G., “Effect of the Blend Ratio on the shape Memory and Self-Healing Behaviour of Ionomer-Polycyclooctene Crosslinked Polymer Blends”, Eur. Polym. J., 98, 154–161 (2018), DOI:10.1016/j.eurpolymj.2017.11.00610.1016/j.eurpolymj.2017.11.006Search in Google Scholar

Qiao, T. K., Song, P., Guo, H. L., Song, X. F., Zhang, B. C. and Chen, X. S., “Reinforced Electrospun PLLA Fiber Membrane via Chemical Cross Linking”, Eur. Polym. J., 74, 101–108 (2016), DOI:10.1016/j.eurpolymj.2015.11.01210.1016/j.eurpolymj.2015.11.012Search in Google Scholar

Rodríguez-Pérez, M. A., “Crosslinked Polyolefin Foams: Production, Structure, Properties, and Applications”, Adv. Polym. Sci., 184, 97–126 (2005), DOI:10.1007/b13624410.1007/b136244Search in Google Scholar

Shieh, Y. T., Liu, C. M., “Silane Grafting Reactions of LDPE, HDPE, and LLDPE“, J. Appl. Polym. Sci., 74, 3404–3411 (1999), DOI:10.1002/(SICI)1097-4628(19991227)74:14<3404::AID-APP14>3.0.CO;2-S10.1002/(SICI)1097-4628(19991227)74:14<3404::AID-APP14>3.0.CO;2-SSearch in Google Scholar

Shieh, Y. T., Chuang, H. C., “DSC and DMA Studies on Silane-Grafted and Water-Crosslinked LDPE/LLDPE Blends”, J. Appl. Polym. Sci., 81, 1808–1816 (2001), DOI:10.1002/app.161410.1002/app.1614Search in Google Scholar

Shen, L. G., Li, J. X., Li, R. J., Lin, H. J., Chen, J. R. and Liao, B. Q., “A New Strategy to Produce Low-Density Polyethylene (LDPE)-Based Composites Simultaneously with High Flame Retardancy and High Mechanical Properties”, Appl. Surf. Sci., 437: 75–81 (2018), DOI:10.1016/j.apsusc.2017.12.14910.1016/j.apsusc.2017.12.149Search in Google Scholar

Salmon, W. A., Loan, L. D., “Radiation Cross Linking of Poly(viny1 chloride)“, J. Appl. Polym. Sci., 16, 671–682 (1972), DOI:10.1002/app.1972.07016031210.1002/app.1972.070160312Search in Google Scholar

Tamboli, S. M., Mhaske, S. T. and Kale, D. D., “Crosslinked Polyethylene”, Indian J. Chem. Technol., 11, 853–864 (2004)Search in Google Scholar

Taleyarkhan, R., Bakken, A. C., Fisher, K. F., Hagen, A. R. and Kostry, N. P., U. S. Patent US2015032231 0A1 (2015)Search in Google Scholar

Zamotaev, P., Shibirin, E., “Photocross Linking of Polypropylene: The Effect of Different Photo-Initiators and Coagents”, Polym. Degrad. Stab., 47, 93–107 (1995), DOI:10.1016/0141-3910(94)00100-M10.1016/0141-3910(94)00100-MSearch in Google Scholar


This work is financial supported by Scientific Research Project of Xuchang University (No. 2020 ZD 001) and Teaching and Research Project of Xuchang University (No. PX-718335).

Received: 2019-10-27
Accepted: 2020-08-16
Published Online: 2021-03-09
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.12.2023 from
Scroll to top button