Abstract
In the melt blowing process, the molten polymers extruded from nozzles are elongated by high-velocity and high-temperature air flow. In this study, with the aim of stabilizing the melt blowing process for producing nonwoven webs with fine diameter fibers, the effect of the control of polymer rheology by the introduction of either low melt flow rate (MFR) polypropylene (PP) or long chain branched PP (LCB-PP) to regular high MFR PP was investigated. Introduction of low MFR PP into regular PP increased shear viscosity and fibers of larger diameter were produced in the melt blowing process, while introduction of low MFR LCB-PP suppressed the elongational viscosity reduction with the increase of strain rate, and eventually spinning was stabilized. It was found that the blending of an optimum amount of LCB-PP to regular PP caused the stabilization of the melt blowing process. As a result, the formation of nonwoven webs consisting of fine fibers of rather uniform diameter distribution could be achieved.
References
Bagley, E. B., "End Corrections in the Capillary Flow of Polyethylene", Polym. Eng. Sci., 28, 624–627 (1957), DOI:10.1063/1.172281410.1063/1.1722814Search in Google Scholar
Chen, T., Huang, X., "Study on the Flow Field of the Air Jet from Dual Slot Die in the Melt Blowing Process", Polym. Eng. Sci., 41, 971–976 (2001), DOI:10.1002/pen.1079710.1002/pen.10797Search in Google Scholar
Chhabra, R., Shambaugh, R. L., "Experimental Measurements of Fiber Threadline Vibrations in the Melt-Blowing Process", Ind. Eng. Chem. Res., 35, 4366–4374 (1996), DOI:10.1021/ie960309λ10.1021/ie960309λSearch in Google Scholar
Cogswell, F. N., "Measuring the Extensional Rheology of Polymer Melts", Trans Soc. Rheol., 16, 383–403 (1972), DOI:10.1122/1.54925710.1122/1.549257Search in Google Scholar
Drabek, J., Zatloukal, M., "Influence of Long Chain Branching on Fiber Diameter Distribution for Polypropylene Nonwovens Produced by Melt Blown Process", J. Rheol., 63, 519–532 (2019), DOI:10.1122/1.504858510.1122/1.5048585Search in Google Scholar
Drabek, J., Zatloukal, M., "Meltblown Technology for Production of Polymeric Microfibers/Nanofibers: A Review", Phys. Fluids., 31 (2019), DOI:10.1063/1.511633610.1063/1.5116336Search in Google Scholar
Ellison, C. J., Phatak, A., Giles, D. W., Macosko, C. W. and Bates, F. S., "Melt Blown Nanofibers: Fiber Diameter Distributions and Onset of Fiber Breakup", Polymer, 48, 3306–3316 (2007), DOI:10.1016/j.polymer.2007.04.00510.1016/j.polymer.2007.04.005Search in Google Scholar
Hao, X., Zeng, Y., "A Review on the Studies of Air Flow Field and Fiber Formation Process during Melt Blowing", Ind. Eng. Chem. Res., 58, 11624–11637 (2019), DOI:10.1021/acs.iecr.9b0169410.1021/acs.iecr.9b01694Search in Google Scholar
Harpham, A. S., Shambaugh, R. L., "Flow Field of Practical Dual Rectangular Jets", Ind. Eng. Chem. Res., 35, 3776–3781 (1996), DOI:10.1021/ie960309λ10.1021/ie960309λSearch in Google Scholar
Kamin, Z., Sarbatly, R., Krishnaiah, D., Tanioka, A. and Takahashi, M., "Melt Blowing Process Conditions for Nanofibers of Polymers for Oil-Water Separation in Marine Oil Spills Clean-up Applications: A Short Review", J. Mech. Eng. Res. Dev., 42, 205–210 (2019), DOI:10.26480/jmerd.05.2019.205.21010.26480/jmerd.05.2019.205.210Search in Google Scholar
Lawrence, K. D., Lucas, R. T. and Young, J. A.: An Improved Device for the Formation of Superfine, Thermoplastic Fibers, No. NRL-5265, Naval Research LAB, Washington DC (1959), DOI:10.21236/AD021336710.21236/AD0213367Search in Google Scholar
Lenk, R. S., "Chapter 7 The Hagen-Poiseuille Equation and the Rabinowitsch Correction. The Pressure Drop in Tapered Channels", in Polymer Rheology, Springer, Dordrecht, p. 75–85 (1978), DOI:10.1007/978-94-010-9666-9_710.1007/978-94-010-9666-9_7Search in Google Scholar
McCulloch, J. G., "The History of the Development of Melt Blowing Technology", Int. Nonwovens J., os-°, 1 (1999), DOI:10.1177/1558925099os-80012310.1177/1558925099os-800123Search in Google Scholar
Padmanabhan, M., Macosko, C. W., "Extensional Viscosity from Entrance Pressure Drop Measurements", Rheol. Acta., 36, 144–151 (1997), DOI:10.1007/s00397005003110.1007/s003970050031Search in Google Scholar
Rao, R. S., Shambaugh, R. L., "Vibration and Stability in the Melt Blowing Process", Ind. Eng. Chem. Res., 32, 3100–3111 (1993), DOI:10.1021/ie00024a02010.1021/ie00024a020Search in Google Scholar
Ruamsuk, R., Takarada, W. and Kikutani, T., "Fine Filament Formation Behavior of Polymethylpentene and Polypropylene near Spinneret in Melt Blowing Process", Int. Polym. Proc., 31, 217–223 (2016), DOI:10.3139/217.316310.3139/217.3163Search in Google Scholar
Sedlacek, T., Zatloukal, M., Filip, P., Boldizar, A. and Saha, P., "On the Effect of Pressure on the Shear and Elongational Viscosities of Polymer Melts", Polym. Eng. Sci., 44, 1328–1337 (2004), DOI:10.1002/pen.2012810.1002/pen.20128Search in Google Scholar
Tan, D. H., Zhou, C., Ellison, C. J., Kumar, S., Macosko, C. W. and Bates, F. S., "Meltblown Fibers: Influence of Viscosity and Elasticity on Diameter Distribution", J. Non-Newtonian Fluid Mech., 165, 892–900 (2010), DOI:10.1016/j.jnnfm.2010.04.01210.1016/j.jnnfm.2010.04.012Search in Google Scholar
Tate, B. D., Shambaugh, R. L., "Modified Dual Rectangular Jets for Fiber Production", Ind. Eng. Chem. Res., 37, 3772–3779 (1998), DOI:10.1021/ie980219a10.1021/ie980219aSearch in Google Scholar
Tate, B. D., Shambaugh, R. L., "Temperature Fields below Melt-Blowing Dies of Various Geometries", Ind. Eng. Chem. Res., 43, 5405–5410 (2004), DOI:10.1021/ie040066t10.1021/ie040066tSearch in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany