Abstract
Polyurethane is a widely used polymer that has good abrasion resistance and low-temperature resistance. However, polyurethane composite materials are highly inflammable and thus require the use of flame retardants. This study selected green and environment-friendly flame retardants such as expanded graphite, aluminum hydroxide, and kaolin to be used as individual or paired retardants to produce polyurethane composites. By analyzing the potential and mechanical properties of the polyurethane composites, it was found that the composite material with the flame retardant composed of graphite and modified kaolin had better flame retardancy, smoke suppression performance, and high thermal stability.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (no. 51804034, no. 41807211, no. 51904032).
References
Bahramian, A. R., Kokabi, M., Famili, M. H. N. and Beheshty, M. H., “High Temperature Ablation of Kaolinite Layered Silicate/Phenolic Resin/Asbestos Cloth Nanocomposite”, J. Hazar. Mater., 150, 136–145 (2008), DOI:10.1016/j.jhazmat.2007.04.10410.1016/j.jhazmat.2007.04.104Search in Google Scholar
Bian, X. C., Tang, J. H., Li, Z. M., Lu, Z. Y. and Lu, A., “Dependence of Flame-Retardant Properties on Density of Expandable Graphite Filled Rigid Polyurethane Foam”, J. App. Polym. Sci., 104, 3347–3355 (2007), DOI:10.1002/app.2593310.1002/app.25933Search in Google Scholar
Cao, Q., Li, H. H., “Three Kinds of Oranic Intercalation Modification Agent on Kaolin”, World Sci. Tech. R&D., 24, 649–653 (2014)Search in Google Scholar
Chattopadhyay, D. K., Webster, D. C., “Thermalstability and Flame Retardancy of Polyurethanes”, Prog. Polym. Sci., 34, 1068–1073(2009), DOI:10.1016/j.progpolymsci.2009.06.00210.1016/j.progpolymsci.2009.06.002Search in Google Scholar
Chen, M. J., Shao, Z. B., Wang, X. L., Chen, L. and Wang, Y. Z., “Halogen Free Flame – Retardant Flexible Polyurethane Foam with a Novel Nitrogen–Phosphorus Flame Retardant”, Ind. Eng. Chem. Res., 51, 9769–9776 (2012), DOI:10.1021/ie301004d10.1021/ie301004dSearch in Google Scholar
Duquesne, S., Bras, M. L., Bourbigot, S., Delobel, R., Camino, G., Eling, B., Lindsay, C. and Roels, T., “Thermal Degradation of Polyurethane and Polyurethane/Expandable Graphite Coatings”, Polym. Degrad. Stab., 74, 493–499 (2001), DOI:10.1016/S0141-3910(01)00177-X10.1016/S0141-3910(01)00177-XSearch in Google Scholar
Elboklt, A., Detellier, C., “Kaolinite-Poly(methacrylamide) Intercalated Nano Composite via in situ Polymerization”, Canadian J. Chem., 87, 272–279 (2009), DOI:10.1139/v08-14210.1139/v08-142Search in Google Scholar
Frost, R. L., Kristof, J., Kloprogge, J. T. and Locos, O. B., “Infrared Spectroscopic Study of Potassium and Cesium Acetate-intercalated Kaolinites”, Vib. Spectrosc., 26, 33–42 (2001a), DOI:10.1016/S0924-2031(01)00108-410.1016/S0924-2031(01)00108-4Search in Google Scholar
Frost, R. L., Kristof, J., Rintoul, L. and Kloprogge, J. T., “Raman Spectroscopy of Urea and Urea-Intercalated Kaolinites at 77 K“, Spectrochim. Acta, Part A, 56, 1681–1691 (2000), DOI:10.1016/S1386-1425(00)00223-710.1016/S1386-1425(00)00223-7Search in Google Scholar
Frost, R. L., Kristof, J., Schmidt, J. T. and Kloprogge, J., “Raman Spectroscopy of Potassium Acetate- Intercalated Kaolinites at Liquid Nitrogen Temperature”, Spectrochim. Acta, Part A, 57, 603–609 (2001b), DOI:10.1016/S1386-1425(00)00382-610.1016/S1386-1425(00)00382-6Search in Google Scholar
Frost, R., Kristof, J. and Horvath, E., “Deintercalation of Dimethylsulphoxide Intercalated Kaolinites–A DTA/TGA and Raman Spectroscopic Study”, Thermochim. Acta, 327, 155–166 (1999), DOI:10.1016/S0040-6031(98)00605-410.1016/S0040-6031(98)00605-4Search in Google Scholar
Gardolinski, J. E., Carrera, L. C. M., Cantao, M. P. and Wypych, F., “Layered Polymer-Kaolinite Nanocomposites”, J. Mater. Sci., 35, 3113–3119 (2000), DOI:10.1023/a:100482000325310.1023/a:1004820003253Search in Google Scholar
Ji, L. J., Zhang, J. X., “Synthesis, Characterization and Electrorheological Properties of Polyaniline/Titanate Core Shell Composite”, J. Macromol. Sci. Part A Pure Appl. Chem., 44, 759–767 (2007), DOI:10.1080/1060132090293898810.1080/10601320902938988Search in Google Scholar
Knig, A., Kroke, E., “Flame Retardancy Working Mechanism of Methyl-DOPO and MPPP in Flexible Polyurethane Foam”, Fire Mater., 36, 1–15 (2012), DOI:10.1002/fam.107710.1002/fam.1077Search in Google Scholar
Levchik, S. V., Weil, E. D., “Thermal Decomposition, Combustion and Fire-Retardancy of Polyurethanes – A Review of the Recent Literature”, Polym. Int., 53, 1585–610 (2004), DOI:10.1002/pi.131410.1002/pi.1314Search in Google Scholar
Liu, L. H., Luan, Z., Chen, M. Y., Zhang, J. and An, X., “Surface Modification of Aluminum Hydroxide as Flame Retardant and its Application in Soft PVC“, Journal of Capital Normal University (Natural Science Edition), 40, 37–41 (2019)Search in Google Scholar
Meng, X. Y., Ye, L., Zhang, X. G., Tang, P. M., Tang, J. H., Ji, X. and Li, Z. M., “Effects of Expandable Graphite and Ammonium Polyphosphate on the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foams”, J. Appl. Polym. Sci., 114, 853–863 (2009), DOI:10.1002/app.3048510.1002/app.30485Search in Google Scholar
Modesti, M., Lorenzetti, A., “Halogen-Free Flame Retardants for Polymeric Foams”, Polym. Degrad. Stab., 78, 167–173 (2002), DOI:10.1016/S0141-3910(02)00130-110.1016/S0141-3910(02)00130-1Search in Google Scholar
Modesti, M., Lorenzetti, A., “Improvement on Fire Behaviour of Water Blown PIR–PUR Foams: Use of an Halogen-Free Flame Retardant”, Eur. Polym. J., 39, 263–268 (2003), DOI:10.1016/S0014-3057(02)00198-210.1016/S0014-3057(02)00198-2Search in Google Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M. and Quirk, James P., “Infrared Spectra of Kaolin Mineral Dimethyl Sulfoxide Complexes”, J. Phys. Chem., 72, 241–249 (1968), DOI:10.1021/j100847a04510.1021/j100847a045Search in Google Scholar
Robert, L., White, J.,“Infrared Studies of Hydrogen Bonding Intercalation between Kaolinite Surfaces and Intercalated Potassium Acetate, Hydrazine, Formamide and Urea”, J. Colloid Interf. Sci., 21,127–152 (1966), DOI:10.1016/0095-8522(66)90029-°10.1016/0095-8522(66)90029-°Search in Google Scholar
Shi, L., Li, Z. M., Xie, B. H., Wang, J. H., Tian, C. R. and Yang, M. B., “Flame Retardancy of Different-Sized Expandable Graphite Particles for High-Density Rigid Polyurethane Foams”, Polym. Int., 155, 862–871 (2006), DOI:10.1002/pi.202110.1002/pi.2021Search in Google Scholar
Shi, L., Li, Z. M., Yang, M. B.,Yin, B., Zhou, Q. M., Tian, C. R. and Wang, J. H., “Expandable Graphite for Halogen-Free Flame-Retardant of High-Density Rigid Polyurethane Foams”. Polym. Plast. Technol. Eng., 44, 1323–1337 (2005), DOI:10.1080/0360255050020814510.1080/03602550500208145Search in Google Scholar
Sonnenschein, M. F., Wendt, B.L., “Design and Formulation of Soybean Oil Derived Flexible Polyurethane Foams and their Underlying Polymer Structure/Property Relationships”, Polym., 54, 2511–2520 (2013), DOI:10.1016/j.polymer.2013.03.02010.1016/j.polymer.2013.03.020Search in Google Scholar
Tsunematsu, K., Tateyama, H., “Delamination of Urea-Kaolinite Complex by Using Intercalation Prcedures”, J. Am. Ceram. Soc., 82, 1589–1591 (1999), DOI:10.1111/j.1151-2916.1999.tb01963.x10.1111/j.1151-2916.1999.tb01963.xSearch in Google Scholar
Usta, N., “Investigation of Fire Behavior of Rigid Polyurethane Foams Containing Flyash and Intumescent Flame Retardant by Using a Cone Calorimeter”, J. Appl. Polym. Sci., 124, 3372–3382 (2012), DOI:10.1002/app.3535210.1002/app.35352Search in Google Scholar
Wang, J. L., Sun, J. F., “The Present Situation and Development of Domestic Caluminium Hydroxide Flame Retardant”, Light Metals, 9, 16–20 (2011), DOI:10.1007/s11460–011–0135–110.1007/s11460–011–0135–1Search in Google Scholar
Xu, D. F., Yu, K. J., Qian, K. and Sun, J., “Development of Flame Retardants in Rigid Polyurethane Foam”, Aerospace Mater. Tech., 3, 6–11 (2018)Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston