Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2021

The Effect of Silica Nanofiller on the Physical and Thermal Characteristics of Rubber-Based Composites

A. Chelli, L. Hemmouche, H. Ait-Sadi, D. Trache, M. Benziane and R. Ait-Sadi

Abstract

The use of nano composites in elastomer blends gives outstanding mechanical properties compared to the use of micro and macro composites, even with very low nano filler content. In this paper, we studied the influence of varying proportions of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) reinforced with nano silica on the mechanical and thermal characteristics of the rubber. Mechanical characterizations were carried out with hardness, tensile strength, elongation at break, tear strength, modulus and toughness. For thermal analyses, we used differential scanning calorimetry ( DSC) and Thermogravimetric Analysis (TGA). In most cases, the increase in the percentage of NBR with the presence of nano silica enhances hardness, modulus and toughness, however, it reduces tensile strength, tear strength and elongation at break. It was found that nano silica has a catalytic effect on the mixture, and NBR has a catalytic effect on the decomposition of NR.


Larbi Hemmouche, Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique Bordj El Bahri, 16111 Alger, Algeria


References

Arayapranee, W., Rempel, G. L., “Effects of Polarity on the Filler-Rubber Interaction and Properties of Silica Filled Grafted Natural Rubber Composites”, Journal of Polymers, 1–9 (2013), DOI:10.1155/2013/27952910.1155/2013/279529Search in Google Scholar

ASTM D5045-992007, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials" (2007)Search in Google Scholar

Bachmann, J. H., Sellers, J. W., Wagner, M. P. and Wolf, R. F., “Fine Particle Reinforcing Silicas and Silicates in Elastomers”, Rubber Chem.Technol., 32, 1286–1391 (1959), DOI:10.5254/1.354249110.5254/1.3542491Search in Google Scholar

Behnood, A., Gharehveran, M. M., “Morphology, Rheology, and Physical Properties of Polymer-Modified Asphalt Binders”, Eur. Polym. J., 112, 766–791 (2019), DOI:10.1016/j.eurpolymj.2018.10.04910.1016/j.eurpolymj.2018.10.049Search in Google Scholar

Bhattacharya, M., Bhowmick, A. K., “Analysis of Wear Characteristics of Natural Rubber Nanocomposites”, Wear, 269, 152–166 (2010), DOI:10.1016/j.wear.2010.03.02210.1016/j.wear.2010.03.022Search in Google Scholar

Bokobza, L., “The Reinforcement of Elastomeric Networks by Fillers”, Macromol. Mater. Eng., 289, 607–621 (2004), DOI:10.1002/mame.20040003410.1002/mame.200400034Search in Google Scholar

Borapak, W., Chueangchayaphan, N., Pichaiyut, S. and Chueangchayaphan, W., “Cure Characteristics and Physico-Mechanical Properties of Natural Rubber/Silica Composites: Effect of Natural Rubber-Graft-Poly(2-hydroxyethyl acrylate) Content”, Polym. Bull., 1, 1–15 (2020), DOI:10.1007/s00289-020-03199-z10.1007/s00289-020-03199-zSearch in Google Scholar

Boutaleb, S., Zaïri, F., Mesbah, A., Naït-Abdelaziz, M., Gloaguen, J.-M., Boukharouba, T. and Lefebvre, J.-M., “Micromechanics-Based Modelling of Stiffness and Yield Stress for Silica/Polymer Nanocomposites”, Int. J. Solids Struct., 46, 1716–1726 (2009), DOI:10.1016/j.ijsolstr.2008.12.01110.1016/j.ijsolstr.2008.12.011Search in Google Scholar

Cao, X., Xu, C., Wang, Y., Liu, Y. and Chen, Y., “New Nanocomposite Materials Reinforced With Cellulose Nanocrystals in Nitrile Rubber”, Poly. Test., 32, 819–826 (2013), DOI:10.1016/j.polymertesting.2013.04.00510.1016/j.polymertesting.2013.04.005Search in Google Scholar

Chalykh, A., Gerasimov, V., Gorshkova, O. and Matveev, V., “The Fractal Dimensions of Carbon-Black-Filled Polymers and Elastomers, Part 1, Materials and Methods of Investigation, and Morphology”, Int. Polym. Sci. Technol., 45, 137–142 (2018), DOI:10.1177/0307174X180450040110.1177/0307174X1804500401Search in Google Scholar

Chen, F., Qian, J., “Studies of the Thermal Degradation of Waste Rubber”, Waste Manage., 23, 463–467 (2003), DOI:10.1016/S0956-053X(03)00090-410.1016/S0956-053X(03)00090-4Search in Google Scholar

Chiu, H.-T., Chiang, T.-Y., Chen, L.-Y., Chang, C.-Y., Kuo, M.-T., Wang, Y.-X. and Lee, R., “Characteristics, Nano-Dispersibility and Application of Conducting Polypyrrole Inserted into Nitrile Rubber by Single-Step in situ Polymerization”, Polym. Plast. Technol. Eng., 50, 873–881 (2011), DOI:10.1080/03602559.2010.55144010.1080/03602559.2010.551440Search in Google Scholar

Choi, S. S., “Improvement of Properties of Silica-Filled Styrene–Butadiene Rubber Compounds Using Acrylonitrile–Butadiene Rubber”, J. Appl. Polym. Sci., 79, 1127–1133 (2001), DOI:10.1002/1097-4628(20010207)79 : 6<1127::AID-APP170>3.0.CO;2-°10.1002/1097-4628(20010207)79Search in Google Scholar

Crié, A. “Caractérisation et Lois Rhéologiques d’Élastomères Chargés à Basse Température pour la Simulation du Procédé d’extrusion”, PhD Thesis, Ecole Nationale Supérieure des Mines de Paris, France (2014)Search in Google Scholar

Das, A., Debnath, S. C., De, D. and Basu., D. K., “Evaluation of Physical Properties and Curing Characteristics of Silica-Filled Ethylene–Propylene–Diene Terpolymer in the Presence of Chloroprene Rubber”, J. Appl. Polym. Sci., 93, 196–200 (2004), DOI:10.1002/app.2045210.1002/app.20452Search in Google Scholar

Das, A., Stöckelhuber, K. W., Rooj, S., Wang, D.-Y. and Heinrich, G., “Synergistic Effects of Expanded Nanoclay and Carbon Black on Natural Rubber Compounds”, Kautschuk Gummi Kunststoffe, 63, 296–302 (2010)Search in Google Scholar

Donnet, J.-B., “Black and White Fillers and Tire Compound”, Rubber Chem. Technol., 71, 323–341 (1998), DOI:10.5254/1.353848810.5254/1.3538488Search in Google Scholar

Du, X., Zhang, Y., Pan, X., Meng, F., You, J. and Wang, Z., “Preparation and Properties of Modified Porous Starch/Carbon Black/Natural Rubber Composites”, Composites Part B, 156, 1–7 (2019), DOI:10.1016/j.compositesb.2018.08.03310.1016/j.compositesb.2018.08.033Search in Google Scholar

Fakirov, S., “Polymer Nanocomposites: Why their Mechanical Performance Does not Justify the Expectation and a Possible Solution to the Problem?“, Express Polym. Lett., 14, 436–466 (2020), DOI:10.3144/expresspolymlett.2020.3610.3144/expresspolymlett.2020.36Search in Google Scholar

Fragiadakis, D., Pissis, P. and Bokobza, L., “Glass Transition and Molecular Dynamics in Poly(dimethylsiloxane)/Silica Nanocomposites”, Polymer, 46, 6001–6008 (2005), DOI:10.1016/j.polymer.2005.05.08010.1016/j.polymer.2005.05.080Search in Google Scholar

Fu, W., Wang, L., Huang, J., Liu, C., Peng, W., Xiao, H. and Li, S., “Mechanical Properties and Mullins Effect in Natural Rubber Reinforced by Grafted Carbon Black”, Adv. Polym. Technol., Volume 2019, Pages 1–11 (2019), DOI:10.1155/2019/452369610.1155/2019/4523696Search in Google Scholar

Gann, R., Dipert, R. and Drews, M., “Flammability" Encyclopedia of Polymer Science and Engineering, Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G. (Eds.), Volume 7, John Wiley and Sons, New York (1987)Search in Google Scholar

Hui, S., Chaki, T. and Chattopadhyay, S., “Effect of Silica-Based Nanofillers on the Properties of a Low-Density Polyethylene/Ethylene Vinyl Acetate Copolymer Based Thermoplastic Elastomer”, J. Appl. Polym. Sci., 110, 825–836 (2008), DOI:10.1002/app.2853710.1002/app.28537Search in Google Scholar

Hui, S., Chaki, T. K. and Chattopadhyay, S., “Dynamic and Capillary Rheology of LDPE-EVA–Based Thermoplastic Elastomer: Effect of Silica Nanofiller”, Polym. Compos., 31, 377–391 (2010), DOI:10.1002/pc.2081410.1002/pc.20814Search in Google Scholar

Janowska, G., Kucharska-Jastrząbek, A. and Rybiński, P., “Thermal Stability, Flammability and Fire Hazard of Butadiene-Acrylonitrile Rubber Nanocomposites”, J. Therm. Anal. Calorim., 103, 1039–1046 (2011), DOI:10.1007/s10973-010-1282-y10.1007/s10973-010-1282-ySearch in Google Scholar

Jose, J. P., Thomas, S., “Alumina–Clay Nanoscale Hybrid Filler Assembling in Cross-Linked Polyethylene Based Nanocomposites: Mechanics and Thermal Properties”, Phys. Chem. Chem. Phys., 16, 14730–14740 (2014), DOI:10.1039/C4CP01532K10.1039/C4CP01532KSearch in Google Scholar

Kumar, A., Sharma, K. and Dixit, A. R., “A Review of the Mechanical and Thermal Properties of Graphene and its Hybrid Polymer Nanocomposites for Structural Applications”, J. Mater. Sci., 54, 5992–6026 (2019), DOI:10.1007/s10853-018-03244-310.1007/s10853-018-03244-3Search in Google Scholar

Li, Y., Guo, Y., Ge, J., Ma, P. X. and Lei, B., “In situ Silica Nanoparticles-Reinforced Biodegradable Poly(citrate-siloxane) Hybrid Elastomers with Multifunctional Properties for Simultaneous Bioimaging and Bone Tissue Regeneration”, Appl. Mater. Today, 10, 153–163 (2018), DOI:10.1016/j.apmt.2017.11.00710.1016/j.apmt.2017.11.007Search in Google Scholar

Maity, M., Khatua, B. and Das, C., “Effect of Processing on the Thermal Stability of the Blends Based on Polyurethane: Part IV“, Polym. Degrad. Stab., 72, 499–503 (2001), DOI:10.1016/S0141-3910(01)00050-710.1016/S0141-3910(01)00050-7Search in Google Scholar

Masłowski, M., Miedzianowska, J. and Strzelec, K., “Natural Rubber Composites Filled with Crop Residues as an Alternative to Vulcanizates with Common Fillers”, Polymers, 11, 972 (2019), DOI:10.3390/polym1106097210.3390/polym11060972Search in Google Scholar PubMed PubMed Central

Matavos-Aramyan, S., Jazebizadeh, M. H. and Babaei, S., “Investigating CO2, O2 and N2 Permeation Properties of Two New Types of Nanocomposite Membranes: Polyurethane/Silica and Polyesterurethane/Silica”, Nano-Structures & Nano-Objects, 21, 100414 (2020), DOI:10.1016/j.nanoso.2019.10041410.1016/j.nanoso.2019.100414Search in Google Scholar

Meera, A., Said, S., Grohens, Y., Luyt, A. and Thomas, S., “Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites”, Ind. Eng. Chem. Res., 48, 3410–3416 (2009), DOI:10.1021/ie801494s10.1021/ie801494sSearch in Google Scholar

Miriyala, S. M., Kim, Y. S., Liu, L. and Grunlan, J. C., “Segregated Networks of Carbon Black in Poly(vinyl acetate) Latex: Influence of Clay on the Electrical and Mechanical Behavior”, Macromol. Chem. Physics, 209, 2399–2409 (2008), DOI:10.1002/macp.20080038410.1002/macp.200800384Search in Google Scholar

Mondal, D., Ghorai, S., Rana, D., De, D. and Chattopadhyay, D., “The Rubber–Filler Interaction and Reinforcement in Styrene Butadiene Rubber/Devulcanize Natural Rubber Composites with Silica–Graphene Oxide”, Polym. Compos., 40, E1559-E1572 (2019), DOI:10.1002/pc.2507610.1002/pc.25076Search in Google Scholar

Munsch, J.-N., “Etude d’Adsorption HNBRs par Microcalorimetrie à Écoulement sur des Noirs de Carbones ou des Silices Modifiées ou non et son Influence sur les Propriétés du Polymère Chargé“, PhD Thesis, Université de Haute Alsace -Mulhouse, France (2014)Search in Google Scholar

Pal, K., Rajasekar, R., Kang, D. J., Zhang, Z. X., Pal, S. K., Das, C. K. and Kim, J. K., “Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear”, Mater. Des., 31, 677–686 (2010), DOI:10.1016/j.matdes.2009.08.01410.1016/j.matdes.2009.08.014Search in Google Scholar

Ponnamma, D., Sadasivuni, K. K., Strankowski, M., Guo, Q. and Thomas, S., “Synergistic Effect of Multi Walled Carbon Nanotubes and Reduced Graphene Oxides in Natural Rubber for Sensing Application”, Soft Matter, 9, 10343–10353 (2013), DOI:10.1039/c3sm51978c10.1039/c3sm51978cSearch in Google Scholar

Prasad, T., Halder, S. and Dhar, S. S., “Imidazole-Supported Silica One-Pot Processed Nanoparticles to Enhance Toughness of Epoxy Based Nanocomposites”, Mater. Chem. Phys., 231, 75–86 (2019), DOI:10.1016/j.matchemphys.2019.04.00210.1016/j.matchemphys.2019.04.002Search in Google Scholar

Qi, D., Liu, C., Chen, Z., Dong, G. and Cao, Z., “In situ Emulsion Copolymerization of Methyl Methacrylate and Butyl Acrylate in the Presence of SiO2 with Various Surface Coupling Densities”, Colloid Polym. Sci., 293, 463–471 (2015), DOI:10.1007/s00396-014-3433-310.1007/s00396-014-3433-3Search in Google Scholar

Rattanasom, N., Saowapark, T. A. and Deeprasertkul, C., “Reinforcement of Natural Rubber with Silica/Carbon Black Hybrid Filler”, Polym. Test., 26, 369–377 (2007), DOI:10.1016/j.polymertesting.2006.12.00310.1016/j.polymertesting.2006.12.003Search in Google Scholar

Saleh, T. A., Parthasarathy, P. and Irfan, M., “Advanced Functional Polymer Nanocomposites and their Use in Water Ultra-Purification”, Trends Environ. Anal. Chem., 24, E00067 (2019), DOI:10.1016/j.teac.2019.e0006710.1016/j.teac.2019.e00067Search in Google Scholar

Sengloyluan, K., Sahakaro, K., Dierkes, W. K. and Noordermeer, J. W., “Silica-Reinforced Tire Tread Compounds Compatibilized by Using Epoxidized Natural Rubber”, Eur. Polym. J., 51, 69–79 (2014), DOI:10.1016/j.eurpolymj.2013.12.01010.1016/j.eurpolymj.2013.12.010Search in Google Scholar

Seyvet, O., Navard, P., “Collision-Induced Dispersion of Agglomerate Suspensions in a Shear Flow”, J. Appl. Polym. Sci., 78, 1130–1133 (2000), DOI:10.1002/1097-4628(20001031)78 : 5<1130::AID-APP220>3.0.CO;2-I10.1002/1097-4628(20001031)7:5<1130::AID-APP220>3.0.CO;2-ISearch in Google Scholar

Sircar, A., Lamond, T., “Total Thermal Analysis of NBR Vulcanizates”, Rubber Chem. Technol., 51, 647–654 (1978), DOI:10.5254/1.353575210.5254/1.3535752Search in Google Scholar

Song, Y.-H., Zeng, L.-B. and Zheng, Q., “Understanding the Reinforcement and Dissipation of Natural Rubber Compounds Filled with Hybrid Filler Composed of Carbon Black and Silica”, Chin. J. Polym. Sci., 35, 1436–1446 (2017), DOI:10.1007/s10118-017-1987-510.1007/s10118-017-1987-5Search in Google Scholar

Sreekala, M., George, J., Kumaran, M. and Thomas, S., “The Mechanical Performance of Hybrid Phenol-Formaldehyde-Based Composites Reinforced with Glass and Oil Palm Fibres”, Compos. Sci. Technol., 62, 339–353 (2002), DOI:10.1016/S0266-3538(01)00219-610.1016/S0266-3538(01)00219-6Search in Google Scholar

Tang, X., Kang, W., Zhou, B., Gao, Y., Cao, C., Guo, S., Iqbal, M. W. and Yang, H., “Characteristics of Composite Microspheres for In-Depth Profile Control in Oilfields and the Effects of Polymerizable Silica Nanoparticles”, Powder Technol., 359, 205–215 (2020), DOI:10.1016/j.powtec.2019.09.07010.1016/j.powtec.2019.09.070Search in Google Scholar

Thomas, S., Abraham, J., George, S. C. and Thomas, S., “Role of CNT/ Clay Hybrid on the Mechanical, Electrical and Transport Properties of NBR/NR Blends”, Polym. Bull., 77, 1–16 (2020), DOI:10.1007/s00289-019-02693-310.1007/s00289-019-02693-3Search in Google Scholar

Thomas, S. P., Thomas, S. and Bandyopadhyay, S., “Polystyrene– Calcium Phosphate Nanocomposites: Preparation, Morphology, and Mechanical Behavior”, J. Phys. Chem. C, 113, 97–104 (2009), DOI:10.1021/jp806557910.1021/jp8065579Search in Google Scholar

Wenxi, C., Wei, M., Linqi, Z. and Jin, P., “Covalently Bonded PE/ SiO2 Nanocomposites Synthesized by Reactive Extrusion”, Iranian Polymer Journal, 20, 681–687 (2011)Search in Google Scholar

Wu, J., Li, K., Pan, X., Liao, S., You, J., Zhu, K. and Wang, Z., “Preparation and Physical Properties of Porous Starch/Natural Rubber Composites”, Starch-Stärke, 70, 1700296 (2018), DOI:10.1002/star.20170029610.1002/star.201700296Search in Google Scholar

Zhang, C., Tang, Z., Guo, B. and Zhang, L., “Significantly Improved Rubber-Silica Interface via Subtly Controlling Surface Chemistry of Silica”, Compos. Sci. Technol., 156, 70–77 (2018), DOI:10.1016/j.compscitech.2017.12.02010.1016/j.compscitech.2017.12.020Search in Google Scholar

Zhang, K., Wu, W., Meng, H., Guo, K. and Chen, J.-F., “Pickering Emulsion Polymerization: Preparation of Polystyrene/Nano-SiO2 Composite Microspheres with Core-Shell Structure”, Powder Technol., 190, 393–400 (2009), DOI:10.1016/j.powtec.2008.08.02210.1016/j.powtec.2008.08.022Search in Google Scholar

Zhang, Y., Choi, J. R. and Park, S.-J., “Enhancing the Heat and Load Transfer Efficiency by Optimizing the Interface of Hexagonal Boron Nitride/Elastomer Nanocomposites for Thermal Management Applications”, Polymer, 143, 1–9 (2018), DOI:10.1016/j.polymer.2018.03.06710.1016/j.polymer.2018.03.067Search in Google Scholar

Received: 2020-03-09
Accepted: 2020-07-28
Published Online: 2021-03-09
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston