Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2021

Numerical Simulation of Tensile Residual Stresses in SWCNT-Reinforced Polymer Composites

M. R. Soleimany, M. Jamal-Omidi, S. M. Nabavi and M. Tavakolian

Abstract

The residual stresses play a significant role in the mechanical properties and strengthening capability of nanocomposites. The present research aims to numerically investigate the residual stress relaxation in nanotube-reinforced polymers in response to mechanical tensile loading. The systems under study consist of the armchair and zigzag single-walled carbon nanotubes (SWCNT) embedded in a polymer matrix. The nanotubes and polymer matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones (L-J) potential at the interface. The interactions between carbon atoms in the nanotube and nodes in the polymer matrix are modelled by equivalent springs. In order to evaluate the analysis of elastic-perfectly plastic using finite element (FE) modelling, first, relaxation of the plastic residual stresses on steel hemisphere in contact with a rigid flat surface was examined in a loading-unloading cycle and verified with available data. Afterwards, the residual stress relaxation in nanotubes with different space-frame structures was computed due to displacement-controlled loading. Finally, the stress state and the plastic residual stresses in the nanocomposite for different carbon nanotube content were analyzed and discussed during loading and unloading. Regarding the effect of tensile stress, it was revealed that nanotube structures have significant effects on the residual stresses created in the nanocomposite.


Majid Jamal-Omidi, Faculty of Aerospace Engineering, Malek-Ashtar University of Technology, Tehran, 15875-1774, Iran E-mail: j_omidi@mut.ac.ir


References

Agbo, C. O. A., Okorie, B. A. and Obikwelu, D. O. N., “Control of Stress Relaxation and Residual Thermal Stress During Cure of Random Fibre Mat-Reinforced Polyester Composites”, J. Compos. Mater., 51, 3127–3136 (2017), DOI:10.1177/002199831668465510.1177/0021998316684655Search in Google Scholar

Ashrafi, B., Hubert, P., “Modeling the Elastic Properties of Carbon Nanotube Array/Polymer Composites”, Compos. Sci. Technol., 66, 387–396 (2006), DOI:10.1016/j.compscitech.2005.07.02010.1016/j.compscitech.2005.07.020Search in Google Scholar

Chen, W., Zhang, D., “A Micromechanics-Based Processing Model for Predicting Residual Stress in Fiber-Reinforced Polymer Matrix Composites”, Compos. Struct., 204, 153–166 (2018), DOI:10.1016/j.compstruct.2018.07.01610.1016/j.compstruct.2018.07.016Search in Google Scholar

Chen, X. L., Liu, Y. J., “Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites”, Comput. Mater. Sci., 29, 1–11(2004), DOI:10.1016/S0927-0256(03)00090-910.1016/S0927-0256(03)00090-9Search in Google Scholar

Chen, Y., Zhang, Z., Huang, R. and Huang, Z., “Effect of Residual Interface Stress on Thermo-Elastic Properties of Unidirectional Fiber-Reinforced Nanocomposites”, Int. J. Mech. Sci., 113, 133–147 (2016), DOI:10.1016/j.ijmecsci.2016.04.00610.1016/j.ijmecsci.2016.04.006Search in Google Scholar

Farrahi, G. H., Faghidian, S. A. and Smith, D. J., “An Inverse Approach to Determination of Residual Stresses Induced by Shot Peening in Round Bars”, Int. J. Mech. Sci., 51, 726–731 (2009), DOI:10.1016/j.ijmecsci.2009.08.00410.1016/j.ijmecsci.2009.08.004Search in Google Scholar

Farrahi, G. H., Faghidian, S. A., Smith, D. J., “An Inverse Method for Reconstruction of the Residual Stress Field in Welded Plates”, J. Pressure Vessel Technol., Trans ASME, 132, 061205-1:9, (2010), DOI:10.1115/1.400126810.1115/1.4001268Search in Google Scholar

Faghidian, S. A., Goudar, D., Farrahi, G. H. and Smith, D. J., “Measurement, Analysis and Reconstruction of Residual Stresses”, J. Strain Analysis, 47, 254–264 (2012), DOI:10.1177/030932471244114610.1177/0309324712441146Search in Google Scholar

Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W. and Gates, T. S., “The Stress-Strain Behavior of Polymer-Nanotube Composites from Molecular Dynamics Simulation”, Compos. Sci. Technol., 63, 1655–1661 (2003), DOI:10.1016/S0266-3538(03)00059-910.1016/S0266-3538(03)00059-9Search in Google Scholar

Haghgoo, M., Ansari, R. and Hassanzadeh-Aghdam, M. K., “Effective Elastoplastic Properties of Carbon Nanotube-Reinforced Aluminum Nanocomposites Considering the Residual Stresses”, J. Alloys Comp., 752, 476–488 (2018), DOI:10.1016/j.jallcom.2018.04.16810.1016/j.jallcom.2018.04.168Search in Google Scholar

Han, Y., Elliott, J., “Molecular Dynamics Simulations of the Elastic Properties of Polymer/Carbon Nanotube Composites”, Comput. Mater. Sci., 39, 315–323 (2007), DOI:10.1016/j.commatsci.2006.06.01110.1016/j.commatsci.2006.06.011Search in Google Scholar

Han, G., Guan, Z., Li, Z., Zhang, M., Bian, T. and Du, S., “Multi-Scale Modeling and Damage Analysis of Composite with Thermal Residual Stress”, Appl. Compos. Mater., 22, 289–305 (2015), DOI:10.1007/s10443-014-9407-210.1007/s10443-014-9407-2Search in Google Scholar

Jackson, R., Chusoipin, I. and Green, I., “A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts”, ASME J. Tribol., 127, 484–493 (2005), DOI:10.1115/1.184316610.1115/1.1843166Search in Google Scholar

Levin, I., Kaplan, W. D., Brandon, D. G. and Wieder, T., “Residual Stresses in Alumina-Sic Nanocomposites”, Acta Metall. Mater., 42, 1147–1154 (1994), DOI:10.1016/0956-7151(94)90131-710.1016/0956-7151(94)90131-7Search in Google Scholar

Liew, K. M., He, X. Q. and Wong, C. H., “On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes under Axial Tension Using Molecular Dynamics Simulation”, Acta Mater., 52, 2521–2527 (2004), DOI:10.1016/j.actamat.2004.01.04310.1016/j.actamat.2004.01.043Search in Google Scholar

Liew, K. M., Wong, C. H., He, X. Q., Tan, M. J. and Meguid, S. A., “Nanomechanics of Single and Multiwalled Carbon Nanotubes”, Phys. Rev. B, 69, 115429 (2004), DOI:10.1103/PhysRevB.69.11542910.1103/PhysRevB.69.115429Search in Google Scholar

Maksimov, R. D., Meri, R. M., Kalnin, M. and Zicans, J., “Mechanical Properties of Polyethylene and Poly(ethylene terephthalate) Blends”, Mech. Compos. Mater., 39, 189–196 (2003), DOI:10.1023/A:102450990866410.1023/A:1024509908664Search in Google Scholar

Metehri, A., Serier, B., Bachir Bouiadjra, B., Belhouari, M. and Mecirdi, M. A., “Numerical Analysis of the Residual Stresses in Polymer Matrix Composites”, Mater. Des., 30, 2332–2338 (2009), DOI:10.1016/j.matdes.2008.11.00910.1016/j.matdes.2008.11.009Search in Google Scholar

Montazeri, A., Naghdabadi, R., “Study the Effect of Viscoelastic Matrix Model on the Stability of CNT/Polymer Composites by Multi-scale Modeling”, Polym. Compos., 11, 1545–1551 (2009), DOI:10.1002/pc.2079710.1002/pc.20797Search in Google Scholar

Nasdala, L., Kempe, A. and Rolfes, R., “Are Finite Elements Appropriate for Used in Molecular Dynamic Simulations?“, Compos. Sci. Technol., 72, 989–1000 (2012), DOI:10.1016/j.compscitech.2012.03.00810.1016/j.compscitech.2012.03.008Search in Google Scholar

Quek, M. Y., “Analysis of Residual Stresses in a Single Fibre-Matrix Composite”, Int. J. Adhes. Adhes., 24, 379–388 (2004), DOI:10.1016/S0143-7496(03)00097-610.1016/S0143-7496(03)00097-6Search in Google Scholar

Scarpa, F., Adhikari, S., “A Mechanical Equivalence for Poisson’s Ratio and Thickness of C-C Bonds in Single Wall Carbon Nanotubes”, J. Phys. D: Appl. Phys., 41, 085306 (2008), DOI:10.1088/0022-3727/41/°/08530610.1088/0022-3727/41/°/085306Search in Google Scholar

Seidel, G. D., Lagoudas, D. C., “Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composites”, Mech. Mater., 38, 884–907 (2006), DOI:10.1016/j.mechmat.2005.06.02910.1016/j.mechmat.2005.06.029Search in Google Scholar

Shokrieh, M. M., Safarabadi, M. “Three-Dimensional Analysis of Microresidual Stresses in Fibrous Composites Based on the Energy Method: A Study Including Interphase Effects”, J. Compos. Mater., 46, 727–735 (2012), DOI:10.1177/002199831141047810.1177/0021998311410478Search in Google Scholar

Shokrieh, M. M., Safarabadi, M. and Ghaanee, A. R., “A New Three-Dimensional Analytical Model to Simulate Microresidual Stresses in Polymer-Matrix Composites”, Mech. Compos. Mater., 48, 273–284 (2012), DOI:10.1007/S11029-012-9274-610.1007/S11029-012-9274-6Search in Google Scholar

Simonov-Emel’yanov, I. D., Pykhtin, A. A. and Kovaleva, A. N., “Residual Stresses in Nanocomposites in Curing Epoxy Oligomers”, Nanotechnol. Russia, 11, 801–804 (2016), DOI:10.1134/S199507801606017310.1134/S1995078016060173Search in Google Scholar

Tan, H., Jiang, L. Y., Huang, Y., Liu, B. and Hwang, K. C., “The Effect of Van Der Waals-Based Interface Cohesive Law on Carbon Nano-tube-Reinforced Composite Materials”, Compos. Sci. Technol., 67, 2941–2946 (2007), DOI:10.1016/j.compscitech.2007.05.01610.1016/j.compscitech.2007.05.016Search in Google Scholar

Thostenson, E. T., Ren, Z. and Chou, T. W., “Advances in the Science and Technology of Carbon Nanotubes and their Composites: A Review”, Compos. Sci. Technol., 61, 1899–912 (2001), DOI:10.1016/S0266-3537(01)00094-X10.1016/S0266-3537(01)00094-XSearch in Google Scholar

Tserps, K. I., Papanikos, P., “Finite Element Modeling of Single-Walled Carbon Nanotubes”, Composites Part B, 36, 468–477 (2005), DOI:10.1016/j.compositesb.2004.10.00310.1016/j.compositesb.2004.10.003Search in Google Scholar

Wernik, J. M., Meguid, S. A., “Atomistic-Based Continuum Modeling of the Nonlinear Behavior of Carbon Nanotubes”, Acta Mech., 212, 167–179 (2010), DOI:10.1007/s00707-009-0246-410.1007/s00707-009-0246-4Search in Google Scholar

Yuan, Z., Wang, Y., Yang, G., Tang, A., Yang, Z., Li, S., Li, Y. and Song, D., “Evolution of Curing Residual Stresses in Composite Using Multi-Scale Method”, Composites Part B., 155, 49–61 (2018), DOI:10.1016/j.compositesb.2018.08.01210.1016/j.compositesb.2018.08.012Search in Google Scholar

Ziaei Moghadam, H. R., Faghidian, S. A., Jamal-Omidi, M. and Rahmati, S., “Micro-Residual Stress Measurement in Nanocomposite Reinforced Polymers”, Int. Polym. Proc., 34, 356–366 (2019), DOI:10.3139/217.375610.3139/217.3756Search in Google Scholar

Received: 2020-03-08
Accepted: 2020-06-07
Published Online: 2021-03-09
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston