Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2021

Effects of Hydrothermal Seawater Aging on the Mechanical Properties and Water Absorption of Glass/Aramid/Epoxy Hybrid Composites

Z. A. Oğuz, A. Erkliğ and Ö. Y. Bozkurt


With the increase in the diversity of applications, the effect of environmental conditions on the mechanical properties of polymeric composites have become more valuable due to the sensitivity of polymers to aging. In this study, an experimental investigation was carried out to study the seawater aging effect on the flexural and low-velocity impact behavior of glass/aramid/ epoxy hybrid composites. Four types of composite groups that are [G6]S, [A6]S, [G3A3]S, [A3G3]S manufactured by vacuum infusion method were immersed in seawater at 25 °C and 70°C for 1000 h. Mechanical tests were conducted under three different conditions, namely, dry, wet, re-dried. As temperature increases, the water gain ratio also increases for all composite groups. Flexural strength was significantly reduced with seawater absorption for the wet state tested groups at each temperature. The reductions in flexural strength of the re-dried test groups are less than in the wet state test samples. Charpy test results showed that as the composite groups were exposed to hydrothermal aging, the impact strength of the plain glass/ epoxy, GAG/epoxy, and AGA/epoxy hybrid composite decreased. SEM analysis showed that as temperature increases, delamination and fiber/matrix cracks also increases.

Zeynal Abidin Oğuz, Faculty of Engineering, Mechanical Engineering Department, Gaziantep University, 27310 Gaziantep, Turkey


Abd El-Baky, M. A., “Experimental Investigation on Impact Performance of Glass-Polypropylene Hybrid Composites: Effect of Water Aging”, J. Thermoplast. Compos. Mater., 32, 657–672 (2019), DOI:10.1177/089270571877287610.1177/0892705718772876Search in Google Scholar

Abd El-Baky, M. A., Attia, M. A., “Water Absorption Effect on the In-Plane Shear Properties of Jute–Glass–Carbon-Reinforced Composites Using Losipescu Test”, Journal of Composite Materials, 53, 3033–3045 (2019), DOI:10.1177/002199831880952510.1177/0021998318809525Search in Google Scholar

Abdel-Magid, B., Ziaee, S., Gass, K. and Schneider, M., “The Combined Effects of Load, Moisture and Temperature on the Properties of E-Glass/Epoxy Composites”, Compos. Struct., 71, 320–326 (2005), DOI:10.1016/j.compstruct.2005.09.02210.1016/j.compstruct.2005.09.022Search in Google Scholar

Arun, K. V., Basavarajappa, S. and Sherigara, B. S., “Damage Characterisation of Glass/Textile Fabric Polymer Hybrid Composites in Seawater Environment”, Mater. Des., 31, 930–939 (2010), DOI:10.1016/j.matdes.2009.07.02910.1016/j.matdes.2009.07.029Search in Google Scholar

ASTM D5229, “Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials" (2014)Search in Google Scholar

Atas, C., Dogan, A. “An Experimental Investigation on the Repeated Impact Response of Glass/Epoxy Composites Subjected to Thermal Ageing”, Composites Part B, 75, 127–134 (2015), DOI:10.1016/J.Compositesb.2015.01.03210.1016/J.Compositesb.2015.01.032Search in Google Scholar

Athijayamani, A., Thiruchitrambalam, M., Natarajan, U. and Pazhanivel, B., “Effect of Moisture Absorption on the Mechanical Properties of Randomly Oriented Natural Fibers/Polyester Hybrid Composite”, Mater. Sci. Eng. A, 517, 344–53 (2009), DOI:10.1016/j.msea.2009.04.02710.1016/j.msea.2009.04.027Search in Google Scholar

Bal, S., Saha, S. J., “Mechanical Performances of Hygrothermally Conditioned CNT/Epoxy Composites Using Seawater”, Polym. Eng., 37, 633–645 (2017), DOI:10.1515/Polyeng-2016-012110.1515/Polyeng-2016-0121Search in Google Scholar

Bian, L., Xiao, J., Zeng, J. and Xing, S., “Effects of Seawater Immersion on Water Absorption and Mechanical Properties of GFRP Composites”, J. Compos. Mater., 46, 3151–3162 (2012), DOI:10.1177/002199831243699210.1177/0021998312436992Search in Google Scholar

Buehler, F. U., Seferis, J. C., “Effect of Reinforcement and Solvent Content on Moisture Absorption in Epoxy Composite Materials”, Composites Part A, 31, 741–748 (2000), DOI:10.1016/S1359-835X(00)00036-110.1016/S1359-835X(00)00036-1Search in Google Scholar

Cerbu, C., “Effects of the Long Time Immersion on the Mechanical Behavior in Case of Some E-Glass/Resin”, Compos. Mater., 19, 363–386 (2010), DOI:10.5772/1046210.5772/10462Search in Google Scholar

Chakraverty, A. P., Mohanty, U. K., Mishra, S. C. and Satapathy, A., “Seawater Ageing of GFRP Composites and the Dissolved Salts”, IOP Conf. Ser. Mater. Sci. Eng. 75, 1–16 (2015), DOI:10.1088/1757-899X/75/1/01202910.1088/1757-899X/75/1/012029Search in Google Scholar

Chow, C., Xing, X. and Li, R., “Moisture Absorption Studies of Sisal Fiber Reinforced Polypropylene Composites”, Compos. Sci. Technol., 67, 306–313 (2007), DOI:10.1016/j.compscitech.2006.08.00510.1016/j.compscitech.2006.08.005Search in Google Scholar

Collings, T. A., Copley, S. M., “On the Accelerated Ageing of CFRP“, Composites, 14, 180–188 (1983), DOI:10.1016/0010-4361(83)90003-410.1016/0010-4361(83)90003-4Search in Google Scholar

Costa, M. L., Almeida, S. F. and Rezende, M. C., “Hygrothermal Effects on Dynamic Mechanical Analysis and Fracture Behavior of Polymeric Composites”, Mater. Res., °, 335–340 (2005), DOI:10.1590/S1516-1439200500030001910.1590/S1516-14392005000300019Search in Google Scholar

Dhakal, H. N., Zhang, Z. Y. and Richardson, M. O. W., “Effect of Water Absorption on the Mechanical Properties of Hemp fibre Reinforced Unsaturated Polyester Composites”, Compos. Sci. Technol., 67, 1674–1683 (2007), DOI:10.1016/j.compscitech.2006.06.01910.1016/j.compscitech.2006.06.019Search in Google Scholar

Ellyin, F., Maser, R., “Environmental Effects on the Mechanical Properties of Glass-Fiber Epoxy Composite Tubular Specimens”, Compos. Sci. Technol., 64, 1863–1874 (2004), DOI:10.1016/j.compscitech.2004.01.01710.1016/j.compscitech.2004.01.017Search in Google Scholar

Espert, A., Vilaplana, F. and Karlsson, S., “Comparison of Water Absorption in Natural Cellulosic Fibers from Wood and One-Year Crops in Polypropylene Composites and its Influence on their Mechanical Properties”, Composites Part A, 35, 1267–1276 (2004), DOI:10.1016/j.compositesa.2004.04.00410.1016/j.compositesa.2004.04.004Search in Google Scholar

Gautier, L., Mortaigne, B. and Bellenger, V., “Interface Damage Study of Hydrothermally Aged Glass-Fiber-Reinforced Polyester Composites”, Compos. Sci. Technol., 59, 2329–2337 (1999), DOI:10.1016/S0266-3538(99)00085-°10.1016/S0266-3538(99)00085-°Search in Google Scholar

Gautier, L., Mortaigne, B., Bellenger, V. and Verdu, J., “Osmotic Cracking Nucleation in Hydrothermal-Aged Polyester Matrix”, Polymer, 41, 2481–2490 (2000), DOI:10.1016/S0032-3861(99)00383-310.1016/S0032-3861(99)00383-3Search in Google Scholar

Gellert, E. P., Turley, D. M., “Seawater Immersion Ageing of Glass-Fibre Reinforced Polymer Laminates for Marine Applications”, Composites Part A, 30, 1259–1265 (1999), DOI:10.1016/S1359-835X(99)00037-°10.1016/S1359-835X(99)00037-°Search in Google Scholar

Hodzic, A., Kim, J. K., Lowe, A. E. and Stachurski, Z. H., “The Effects of Water Aging on the Interphase Region and Interlaminar Fracture Toughness in Polymer–Glass Composites”, Compos. Sci. Technol., 64, 2185–2195 (2004), DOI:10.1016/j.compscitech.2004.03.01110.1016/j.compscitech.2004.03.011Search in Google Scholar

ISO 179–181 “Plastics – Determination of Charpy Impact Properties – Part 1: Non-Instrumented Impact Test (2010)Search in Google Scholar

Jesthi, D. K., Nayak, R. K., “Improvement of Mechanical Properties of Hybrid Composite through Interply Rearrangement of Glass and Carbon Woven Fabrics for Marine Applications”, Composites Part B, 168, 467–475 (2019a), DOI:10.1016/j.compositesb.2019.03.04210.1016/j.compositesb.2019.03.042Search in Google Scholar

Jesthi, D. K., Nayak, R. K., “Evaluation of Mechanical Properties and Morphology of Seawater Aged Carbon and Glass Fiber Reinforced Polymer Hybrid Composites”, Composites Part B, 174, 106980 (2019b), DOI:10.1016/j.compositesb.2019.10698010.1016/j.compositesb.2019.106980Search in Google Scholar

Jost, W.: Diffusion in Solids, Liquids, Gases, Academic Press, New York (1960)Search in Google Scholar

Karasek, M. L., Strait, L. H., Amateau, M. F. and Runt, J. P., “Effect of Temperature and Moisture on the Impact Behavior of Graphite/ Epoxy Composites: Part II-Impact Damage”, J. Compos. Tech. Res., 17, 11–16 (1995), DOI:10.1520/CTR10509J10.1520/CTR10509JSearch in Google Scholar

Lassila, L. V. J., Nohrstrom, T. and Vallittu, P. K., “The Influence of Short-Term Water Storage on the Flexural Properties of Unidirectional Glass Fiber-Reinforced Composites”, Biomaterials, 23, 2221–2229 (2002), DOI:10.1016/S0142-9612(01)00355-610.1016/S0142-9612(01)00355-6Search in Google Scholar

Maslinda, A. B., Abdul Majid, M. S., Ridzuan, M. J. M., Afendi, M. and Gibson A. G., “Effect of Water Absorption on the Mechanical Properties of Hybrid Interwoven Cellulosic-Cellulosic Fbre Reinforced Epoxy Composites”, Compos. Struct, 167, 227–237 (2017), DOI:10.1016/J.Compstruct.2017.02.02310.1016/J.Compstruct.2017.02.023Search in Google Scholar

Menail, Y., El Mahi, A., Assarar, M., Redjel, B. and Kondratas, A., “The Effects of Water Aging on the Mechanical Properties of Glass-Fiber and Kevlar-Fiber Epoxy Composite Materials”, Mechanika, 2, 1392–1207 (2009)Search in Google Scholar

Menail, Y., El Mahi, A., Assarar, M. and Redjel, B., “Acoustic Emission Monitoring of Damage Mechanisms an Aramid-Epoxy Composite after Tensile Fatigue and Aging Seawater”, Mechanica, 22, 1392–1207 (2016), DOI:10.5755/j01.mech.22.1.1217610.5755/j01.mech.22.1.12176Search in Google Scholar

Michalske, T. A., Bunker, B. C., “The Fracturing of Glass”, Scientific American, 257, 122–129 (1987), DOI:10.1038/scientificamerican1287-12210.1038/scientificamerican1287-122Search in Google Scholar

Mourad, A. H. I., Abdel-Magid, B. M., El-Maaddawy, T. and Grami, M. E., “Effect of Seawater and Warm Environment on Glass/Epoxy and Glass/Polyurethane Composites”, Appl. Compos. Mater., 17, 557–573 (2010), DOI:10.1007/s10443-010-9143-110.1007/s10443-010-9143-1Search in Google Scholar

Najafi, M., Ansari, R. and Darvizeh, A., “Environmental Effects on Mechanical Properties of Glass/Epoxy and Fiber Metal Laminates, Part I: Hygrothermal Aging”, Mechanics of Advanced Composite Structures, 4, 187–196 (2017), DOI:10.22075/MACS.2016.50710.22075/MACS.2016.507Search in Google Scholar

Nayak, R. K., Ray, B. C., “Influence of Seawater Absorption on Retention of Mechanical Properties of Nano-TiO2 Embedded Glass Fiber Reinforced Epoxy Polymer Matrix Composites”, Archives of Civil and Mechanical Engineering, 18, 1597–1607 (2018), DOI:10.1016/j.acme.2018.07.00210.1016/j.acme.2018.07.002Search in Google Scholar

Nishizaki, I., Meiarash, S., “Long-Term Deterioration of GFRP in Water and Moist Environment”, J. Compos. Construct., 6, 21–27 (2002), (2002) 6: 1(21), DOI:10.1061/(ASCE)1090-026810.1061/(ASCE)1090-0268Search in Google Scholar

Perrin, F. X., Nguyen, M. H., and Vernet, J. L., “Water Transport in Epoxy-Aliphatic Amine Networks–Influence of Curing Cycles”, Eur. Polym. J., 45, 1524–1534 (2009), DOI:10.1016/j.eurpolymj.2009.01.02310.1016/j.eurpolymj.2009.01.023Search in Google Scholar

Ramesh, C., Arumugam, V., Stanley, J. and Kumar, V., “Effects of Hydrolytic Aging on Glass/Epoxy, Kevlar/Epoxy, and Hybrid (Glass/ Kevlar/Epoxy) Composites”, International Journal of Engineering Research & Technology (IJERT), 2, 2278–0181 (2013)Search in Google Scholar

Ray, B. C., “Temperature Effect during Humid Ageing on Interfaces of Glass and Carbon fibers Reinforced Epoxy Composites”, J. Colloid Interface Sci., 298, 111–117 (2006), PMid: 16386268; DOI:10.1016/j.jcis.2005.12.02310.1016/j.jcis.2005.12.023Search in Google Scholar PubMed

Saha, S., Bal, S., “Long Term Hydrothermal Effect on the Mechanical and Thermo-Mechanical Properties of Carbon Nanofiber Doped Epoxy Composites”, J. Polym. Eng., 38, 251–261 (2017), DOI:10.1515/polyeng-2017-003710.1515/polyeng-2017-0037Search in Google Scholar

Salleh, Z., Taib, Y. M., Hyie, K. M., Mihat, M., Berhan, M. N. and Ghani, M. A. A., “Fracture Toughness Investigation on Long Kenaf/Woven Glass Hybrid Composite due to Water Absorption Effect”, International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012), Procedia Eng., 41, 1667–1673 (2012), DOI:10.1016/j.proeng.2012.07.36610.1016/j.proeng.2012.07.366Search in Google Scholar

Sanjay, M. R., Yogesha, B., “Study on Water Absorption Behavior of Jute and Kenaf Fabric Reinforced Epoxy Composites: Hybridization Effect of E-Glass Fabric”, Int. J. Compos. Mater., 6, 55–62 (2016), DOI:10.5923/j.cmaterials.20160602.0310.5923/j.cmaterials.20160602.03Search in Google Scholar

Sebaey, T. A., Wagih, A., “Flexural Properties of Notched Carbon– Aramid Hybrid Composite Laminates”, J. Compos. Mater., 53, 4137–4148 (2019), DOI:10.1177/002199831985577310.1177/0021998319855773Search in Google Scholar

Shen, C. H., Springer, G. S., “Moisture Absorption and Desorption of Composite Materials”, J. Compos. Mater., 10, 2–20 (1976), DOI:10.1177/00219983760100010110.1177/002199837601000101Search in Google Scholar

Soykok, I. F., Sayman, O. and Pasinli, A., “Effects of Hot Water Aging on Failure Behavior of Mechanically Fastened Glass Fber/Epoxy Composite Joints”, Composites Part B, 54, 59–70 (2013), DOI:10.1016/j.compositesb.2013.04.07310.1016/j.compositesb.2013.04.073Search in Google Scholar

Srivastav, P. A., Wangikar, K. S. and Kale, A. D., “Mechanical Characterization and Effects of Hydrolytic Aging on Glass Kevlar Hybrid Composites”, International Journal of Mechanical and Production Engineering, 5, 2320–2092 (2017)Search in Google Scholar

Standard A. D790–07, “Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation Materials”, Am. Soc. Test. Mater. (1997)Search in Google Scholar

Strait, L. H., Karasek, M. L. and Amateau, M. F., “Effects of Seawater Immersion on the Impact Resistance of Glass Fiber Reinforced Epoxy Composites\ J. Compos. Mater., 26, 2118–2133 (1992), DOI:10.1177/00219983920260140710.1177/002199839202601407Search in Google Scholar

Tanaka, K., Minoshima, K., Grela, W. and Komai, K., “Characterization of the Aramid/Epoxy Interfacial Properties by Means of Pull-Out Test and Influence of Water Absorption”, Compos. Sci. Technol., 62, 2169–2177 (2002), DOI:10.1016/S0266-3538(02)00147-110.1016/S0266-3538(02)00147-1Search in Google Scholar

Thomason, J. L., “The Interface Region in Glass Fiber-Reinforced Epoxy Resin Composites: 2. Water Absorption,Voids and the Interface”, Composites, 26, 477–485 (1995), DOI:10.1016/0010-4361(95)96805-G10.1016/0010-4361(95)96805-GSearch in Google Scholar

Vanlandingham, M. R., Eduljee, R. F. and Gillespie, J. W., “Moisture Diffusion in Epoxy Systems”, J. Appl. Polym. Sci., 71, 787–798 (1999), DOI:10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-A10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-ASearch in Google Scholar

Vigier, G., Tatibouet, J., “Physical Aging of Amorphous and Semi-crystalline Poly(ethylene terephtalate)“, Polymer, 34, 4257–4266 (1993), DOI:10.1016/0032-3861(93)90186-E10.1016/0032-3861(93)90186-ESearch in Google Scholar

Visco, A. M., Calabrese, L. and Cianciafara, P., “Modification of Polyester Resin Based Composites Induced by Seawater Absorption”, Composites Part A, 39, 805–814 (2008), DOI:10.1016/j.compositesa.2008.01.00810.1016/j.compositesa.2008.01.008Search in Google Scholar

Wagih, A., Sebaey, T. A., Yudhanto, A. and Lubineau, G., “Post-Impact Flexural Behavior of Carbon-Aramid/Epoxy Hybrid Composites”, Compos. Struct., 239, 1–9 (2020), DOI:10.1016/j.compstruct.2020.11202210.1016/j.compstruct.2020.112022Search in Google Scholar

Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong J. and Qiu, Y., “Low Velocity Impact Properties of 3D Woven Basalt/Aramid Hybrid Composites”, Compos. Sci. Technol., 68, 444–450 (2008), DOI:10.1016/j.compscitech.2007.06.01610.1016/j.compscitech.2007.06.016Search in Google Scholar

Xin, H., Liu, Y., Mosallam, A., Zhang, Y. and Wang, C., “Hygrothermal Aging Effects on Fexural Behavior of Pultruded Glass Fiber Reinforced Polymer Laminates in Bridge Applications”, Constr. Build. Mater., 127, 237–247 (2016), DOI:10.1016/j.conbuildmat.2016.09.15110.1016/j.conbuildmat.2016.09.151Search in Google Scholar

Yahaya, R., Sapuan, S. M., Jawaid, M., Leman Z. and Zainudin, E. S., “Effect of Fiber Orientations on the Mechanical Properties of Kenaf- Aramid Hybrid Composites for Spall-Liner Application”, Defence Technology, 12, 52–58 (2015), DOI:10.1016/j.dt.2015.08.00510.1016/j.dt.2015.08.005Search in Google Scholar

Zabulionis, D., “Stress and Strain Analysis of Layered Beams under Hygrothermal and Mechanical Loads, Mechanika, Kaunas: Technologija, 3(59), 28–33 (2006)Search in Google Scholar

Zhao, D., Dong, Y., Xu, J., Yang, Y., Fujiwara, K., Suzuki, E., Furukawa, T., Takai, Y. and Hamada, H., “Flexural and Hydrothermal Aging Behavior of Silk Fabric/Glass Mat Reinforced Hybrid Composites”, Fibers Polym., 17, 2131–2142 (2016), DOI:10.1007/s12221-016-6253-x10.1007/s12221-016-6253-xSearch in Google Scholar


This work was supported by the Gaziantep University Scientific Research Project Governing Unit (BAPYB) with a MF.DT.19.08 project number.

Received: 2020-03-16
Accepted: 2020-08-12
Published Online: 2021-03-09
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston