Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 9, 2021

Effect of Graphene, SiO2 and Zeolite Powder on the Mechanical and Scratch Properties of PP

X.-L. Du, J.-B. Jin, X.-B. Long, Y.-M. Xiong and J.-L. Song


Scratch resistant surface of polypropylene (PP) is of critical importance for automobile, household appliances and other industries. In this paper, the mechanical and scratch properties of PP were studied by incorporation of three types of inorganic particles, including graphene (GP), silicon dioxide (SiO2) and zeolite powder (ZP), respectively. Maleic anhydride grafted polypropylene was used as compatibilizer. The effects of inorganic particle content on crystallization, mechanical properties and scratch resistance of PP composites were studied. Results showed that adding inorganic fillers led to enhanced crystallinity of PP, thus improving the scratch resistance of PP materials. Compared with PP/SiO2 and PP/ ZP, PP/GP exhibited the best scratch resistance and low sensitivity to scratch deformation at 2 wt% filler. We believe that the scratch resistance of PP was determined by material characteristics and crystallinity. This will be a reference for the research on the scratch resistance of other polymer materials.

Xuebin Long, Guizhou Materials Industry Technology Research Institute, Guiyang 550014, PRC


The authors gratefully acknowledge the Science and Technology Support Program of GuiZhou Province (BaiYun [2019] 18).


Cartledge, H. C. Y., Baillie, C. and Mai, Y.-W., “Friction and Wear Mechanisms of a Thermoplastic Composite GF/PA6 Subjected to Different Thermal Histories”, Wear, 194, 178–184 (1996), DOI:10.1016/0043-1648(95)06839-210.1016/0043-1648(95)06839-2Search in Google Scholar

Cheng, Q., Jiang, C.-K., Zhang, J.-W., Yang, Z.-R., Zhu, Z.-M. and Jiang, H., “Effect of Thermal Aging on the Scratch Behavior of Poly(methyl methacrylate)“, Tribol. Int., 101, 110–114 (2016), DOI:10.1016/j.triboint.2016.04.01310.1016/j.triboint.2016.04.013Search in Google Scholar

Dasari, A., Rohrmann, J. and Misra, R. D. K., “Microstructural Evolution during Tensile Deformation of Polypropylenes”, Mater. Sci. Eng., A, 35, 200–213 (2003), DOI:10.1016/S0921-5093(02)00854-710.1016/S0921-5093(02)00854-7Search in Google Scholar

Dasari, A., Rohrmann, J. and Misra, R. D. K., “On the Scratch Deformation of Micrometric Wollastonite Reinforced Polypropylene Composites”, Mater. Sci. Eng., A, 364, 357–369 (2004), DOI:10.1016/j.msea.2003.08.05810.1016/j.msea.2003.08.058Search in Google Scholar

Friedrich, K., Sue, H.-J., Liu, P. and Almajid, A. A, “Scratch Resistance of High Performance Polymers”, Tribol. Int., 44, 1032–1046 (2011), DOI:10.1016/j.triboint.2011.04.00810.1016/j.triboint.2011.04.008Search in Google Scholar

Feng, L.-Q., Benhamida, B., Lu, C.-Y., Sung, L.-P., Morel, P. and Detwiler, A. T., “Fundamentals and Characterizations of Scratch Resistance on Automotive Clearcoats”, Prog. Org. Coat., 125, 339–347 (2018), DOI:10.1016/j.porgcoat.2018.09.01110.1016/j.porgcoat.2018.09.011Search in Google Scholar

Gao, W.-M., Wang, L., Coffey, J. K. and Daver, F., “Understanding the Scratch Behaviour of Polymeric Materials with Surface Texture”, Mater. Des., 146, 38–48 (2018), DOI:10.1016/j.matdes.2018.02.07410.1016/j.matdes.2018.02.074Search in Google Scholar

Hadal, R. S., Dasari, R., Rohrmann, J. and Misra, R. D. K., “Susceptibility to Scratch Surface Damage of Wollastonite- and Talc-Containing Polypropylene Micrometric Composites”, Mater. Sci. Eng., A, 380, 326–339 (2004), DOI:10.1016/j.msea.2004.03.05810.1016/j.msea.2004.03.058Search in Google Scholar

Hadal, R. S., Misra, R. D. K., “Scratch Deformation Behavior of Thermoplastic Materials with Significant Differences in Ductility”, Mater. Sci. Eng., A, 398 (1–2), 252–261 (2005), DOI:10.1016/j.msea.2005.03.02810.1016/j.msea.2005.03.028Search in Google Scholar

Hossain, M. M., Moghbelli, E., Jahnke, E., Boeckmann, P., Guriyanova, S., Sander, S., Minkwitz, R. and Sue, H.-J., “Rubber Particle Size and Type Effects on Scratch Behavior of Styrenic-Based Copolymers”, Polymer, 63, 71–81 (2015), DOI:10.1016/j.polymer.2015.02.04510.1016/j.polymer.2015.02.045Search in Google Scholar

Hamdi, M., Zhang, X.-F. and Sue, H.-J., “Fundamental Understanding on Scratch Behavior of Polymeric Laminates”, Wear, 380–381, 203–216 (2017), DOI:10.1016/j.wear.2017.03.02410.1016/j.wear.2017.03.024Search in Google Scholar

Jiang, H., Browning. R. and Sue, H.-J., “Understanding of Scratch-Induced Damage Mechanisms in Polymers”, Polymer, 50, 4056–4065 (2009), DOI:10.1016/j.polymer.2009.06.06110.1016/j.polymer.2009.06.061Search in Google Scholar

Jiang, H., Cheng, Q, Jiang, C.-K., Zhang, J.-W. and Li, Y.-H., “Effect of Stick-Slip on the Scratch Performance of Polypropylene”, Tribol. Int., 91, 1–5 (2015), DOI:10.1016/j.triboint.2015.06.02410.1016/j.triboint.2015.06.024Search in Google Scholar

Jiang, H., Zhang, J.-W., Yang Z.-R., Jiang, C.-K. and Kang, G.-Z., “Modeling of Competition between Shear Yielding and Crazing in Amorphous Polymers Scratch”, Int. J. Solids Struct., 124, 215–228 (2017), DOI:10.1016/j.ijsolstr.2017.06.03310.1016/j.ijsolstr.2017.06.033Search in Google Scholar

Kaymakci, A., Birinci, E. and Ayrilmis, N., “Surface Characteristics of Wood Polypropylene Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes”, Composites Part B, 157, 43–46 (2019), DOI:10.1016/j.compositesb.2018.08.09910.1016/j.compositesb.2018.08.099Search in Google Scholar

Li, L.-L., Qin, L.-L., Liu, J.-W., Zhang, C., Sha, Jiang, J., Wang, X.-L., Chen, W., Xue, J. and Zhou, D.-S., “Crystallization Kinetics of Syndiotactic Polypropylene Confined in Nanoporous Alumina”, Polymer, 110, 273–283 (2017), DOI:10.1016/j.polymer.2016.12.08110.1016/j.polymer.2016.12.081Search in Google Scholar

Misra, R. D. K., Hadal, R. and Duncan, S. J., “Surface Damage Behavior during Scratch Deformation of Mineral Reinforced Polymer Composites”, Acta Mat., 52 (14): 4363–4376 (2004), DOI:10.1016/j.actamat.2004.06.00310.1016/j.actamat.2004.06.003Search in Google Scholar

Moghbelli, E., Browning, R. L. Boo, W.-J., Hahn, S. F., Feick, L. J. E. and Sue, H.-J., “Effects of Molecular Weight and Thermal History on Scratch Behavior of Polypropylene Thin Sheets”, Tribol. Int., 41(5), 425–433(2008), DOI:10.1016/j.triboint.2007.09.00810.1016/j.triboint.2007.09.008Search in Google Scholar

Moghbelli, E., Banyay, R. and Sue, H.-J., “Effect of Moisture Exposure on Scratch Resistance of PMMA“, Tribol. Int., 69, 46–51 (2014), DOI:10.1016/j.triboint.2013.08.01210.1016/j.triboint.2013.08.012Search in Google Scholar

Mazur, M., Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Song, S., Gibson, D., Placido, F., Mazur, P., Kalisz, M. and Poniedzialek, A., “Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2 and SiO2" Appl. Surf. Sci., 380, 165–171(2016), DOI:10.1016/j.apsusc.2016.01.22610.1016/j.apsusc.2016.01.226Search in Google Scholar

Motamedi, P., Bagheri, R., “Study of the Scratch Resistance Criteria and their Relationship with Mechanical Properties and Microstructure in a Ternary Thermoplastic Blend”, Wear, 386–387, 118–128 (2017), DOI:10.1016/j.wear.2017.06.00810.1016/j.wear.2017.06.008Search in Google Scholar

Shin, K.-Y., Hong, J.-Y., Lee, S. and Jang, J., “Evaluation of Anti-Scratch Properties of Graphene Oxide/Polypropylene Nanocomposites”, J. Mater. Chem., 22, 7871–7879 (2012), DOI:10.1039/c2jm15569a10.1039/c2jm15569aSearch in Google Scholar

Tana, F., Messori, M., Contini, D., Cigada, A., Valente, T., Variola, F., Nardo, L. D. and Bondioli, F., “Synthesis and Characterization of Scratch-Resistant Hybrid Coatings Based on Non-Hydrolytic Sol-Gel ZrO2 Nanoparticles”, Prog. Org. Coat., 103, 60–68 (2017), DOI:10.1016/j.porgcoat.2016.11.02210.1016/j.porgcoat.2016.11.022Search in Google Scholar

Wong, M, Lim, G. T., Moyse, A, Reddy, J. N. and Sue, H.-J., “A New Test Methodology for Evaluating Scratch Resistance of Polymers”, Wear, 256, 1214–1227 (2004), DOI:10.1016/j.wear.2003.10.02710.1016/j.wear.2003.10.027Search in Google Scholar

Wang, W., Zhang, W., Chen, H., Zhang, S.-F. and Li, J.-Z., “Synergistic Effect of Synthetic Zeolites on Flame-Retardant Wood-Flour/ Polypropylene Composites”, Constr. Build. Mater., 79, 337–344 (2015), DOI:10.1016/j.conbuildmat.2015.01.03810.1016/j.conbuildmat.2015.01.038Search in Google Scholar

Xu, Y., Li, D., Shen, J.-B., Guo, S.-Y. and Sue, H.-J., “Scratch Damage Behaviors of PVDF/PMMA Multilayered Materials: Experiments and Finite Element Modeling”, Polymer, 182, 1–13 (2019), DOI:10.1016/j.polymer.2019.12182910.1016/j.polymer.2019.121829Search in Google Scholar

Zhang, S. L., Li, J. C. M., “Slip Process of Stick Slip Motion in the Scratching of a Polymer”, Mater. Sci. Eng., A, 344, 182–189 (2003), DOI:10.1016/S0921-5093(02)00409-410.1016/S0921-5093(02)00409-4Search in Google Scholar

Zokaei, S., Lesan Khosh, M. R. and Bagheri, R., “Study of Scratch Resistance in Homo- and Co-Polypropylene Filled with Nanometric Calcium Carbonate”, Mater. Sci. Eng., A, 445–446, 526–536 (2007), DOI:10.1016/j.msea.2006.09.08010.1016/j.msea.2006.09.080Search in Google Scholar

Received: 2020-03-25
Accepted: 2020-07-11
Published Online: 2021-03-09
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston