Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 15, 2021

Pulsed IR Heating of Thermoplastic Sheets for Thermoforming Applications

B. Buffel , K. Leeman and F. Desplentere


This study presents the pulsed heating strategy as an advancement of the current state of the art in industry towards the theoretically fastest method of heating a thermoplastic sheet. Experimental temperature measurements are combined with an explicit finite difference numerical model to describe the pulsed heating method and indicate its added value in IR heating of thermoplastic sheets. Different process settings are evaluated and indicate the effect of the applied heat flux and the time interval tOFF during pulsed heating. When switched off, the residual heating of the heater elements is able to partially compensate for the convective heat losses at the surface of the sheet. This results in a more uniform temperature distribution through thickness without slowing down the overall heating process. The study shows that this effect is lost when the time interval in which the heater element is switched off, increases. Applying pulsed heating opens up a large processing window to control the through-thickness temperature difference. When the total amount of applied thermal energy is taken into account, pulsed heating is able to increase the overall heating rate and simultaneously keep the temperature difference through thickness limited.

Bart Buffel, KU Leuven Campus Brugge, Spoorwegstraat 12, 8200 Brugge, Belgium


Boztepe, S., Gilblas, R., De Almeida, O., Gerlach, C., Le Maoult, Y. and Schmidt, F., "The Role of Microcrystalline Structure on Optical Scattering Characteristics of Semi-Crystalline Thermoplastics and the Accuracy of Numerical Input for IR-Heating Modeling", Int. J. Mater. Form., 11, 717–727 (2018), DOI:10.1007/s12289-017-1386-z10.1007/s12289-017-1386-zSearch in Google Scholar

Boztepe, S., De Almeida, O., Gilblas, R., Le Maoult, Y., Schmidt, F. and Gerlach, C., "A Combined Experimental and Numerical Approach for Radiation Heat Transfer in Semi-Crystalline Thermoplastics", Int. J. of Therm. Sci., 142, 142–155 (2019), DOI:10.1016/j.ijthermalsci.2019.04.02010.1016/j.ijthermalsci.2019.04.020Search in Google Scholar

Brogan, M. T., Monaghan, P. F., "Thermal Simulation of Quartz Tube Infra-Red Heaters Used in the Processing of Thermoplastic Composites", Composites Part A, 27A, 301–306 (1996), DOI:10.1016/1359-835X(95)00056-°10.1016/1359-835X(95)00056-°Search in Google Scholar

Buffel, B., Desplentere, F., "A Numerical Study on Different Heating Strategies in Thermoforming of Thermoplastic Sheets", Proceedings of the Polymer Moulds & Innovation Conference, Ghent, p. 221–226 (2016)Search in Google Scholar

Buffel, B., van Mieghem, B., van Bael, A. and Desplentere, F. "A Combined Experimental and Modelling Approach towards an Optimized Heating Strategy in Thermoforming of Thermoplastic Sheets", Int. Polym. Proc. 32, 378–386 (2017), DOI:10.3139/217.337010.3139/217.3370Search in Google Scholar

Cosson, B., Schmidt, F., Le Maoult, Y. and Bordival, M., "Infrared Heating Stage Simulation of Semi-Transparent Media (PET) Using Ray Tracing Method", Int. J. Mater. Form., 4, 1–10 (2011), DOI:10.1007/s12289-010-0985-°10.1007/s12289-010-0985-°Search in Google Scholar

Bordival, M., Schmidt, F. M., Le Maoult, Y. and Velay, V. "Optimization of Preform Temperature Distribution for the Stretch-Blow Molding of PET Bottles: Infrared Heating and Blowing Modeling", Polym. Eng. Sci., 49, 783–793 (2009), DOI:10.1002/pen.2129610.1002/pen.21296Search in Google Scholar

Courant, R., Friedrichs, K. and Lewy, H., "On the Partial Difference Equations of Mathematical Physics", IBM J. Res. Develop., 11, 215–234 (1967), DOI:10.1147/rd.112.021510.1147/rd.112.0215Search in Google Scholar

Chy, M. I., Boulet, B., "A New Method for Estimation and Control of Temperature Profile over α Sheet in Thermoforming Process", IEEE Publications, Houston (2010), DOI:10.1109/IAS.2011.607434210.1109/IAS.2011.6074342Search in Google Scholar

Chy, M. I., Boulet, B., "Development of an Improved Mathematical Model of the Heating Phase of Thermoforming Process", IEEE Publications, Orlando (2011a), DOI:10.1109/IAS.2011.607434310.1109/IAS.2011.6074343Search in Google Scholar

Chy, M. I., Boulet, B., "A Model Predictive Controller of Plastic Sheet Temperature for α Thermoforming Process", Proceedings of the American Control Conference, San Francisco, p. 4410–4415, (2011b), DOI:10.1109/ACC.2011.599155110.1109/ACC.2011.5991551Search in Google Scholar

Chy, M. I., Boulet, B., "Iterative Learning Model Predictive Controller (2016), DOI:10.1002/9781119116288.ch12 of Plastic Sheet Temperature for α Thermoforming Sheet", Proceedings of the American Control Conference, Montreal, Canada, p. 627–633 (2012), DOI:10.1109/ACC.2012.631552110.1002/9781119116288.ch12Search in Google Scholar

Cunningham, J. E., Monaghan, P. F., Brogan M. T. and Cassidy, S. F., "Modelling of Pre-Heating of Flat Panels Prior to Press Forming", Composites Part A, 28A, 17–24 (1997), DOI:10.1016/S1359-835X(96)00089-910.1016/S1359-835X(96)00089-9Search in Google Scholar

Cunningham, J. E., Monaghan, P. F. and Brogan M. T., "Prediction of the Temperature Profile within Composite Sheets during Pre-Heating", Composites Part A, 29A, 51–61 (1998), DOI:10.1016/S1359-835X(97)00031-610.1016/S1359-835X(97)00031-6Search in Google Scholar

Dos Santos, W. N., "Thermal Properties of Melt Polymers by the Hot Wire Technique", Polym. Test., 24, 932–941 (2005), DOI:10.1016/j.polymertesting.2005.06.00110.1016/j.polymertesting.2005.06.001Search in Google Scholar

Duarte, F. M., Covas, J. A., "On the Use of the Heating Stage to Control the Thickness Distribution in Thermoformed Parts", Int. Polym. Proc., 19, 186–198 (2004), DOI:10.3139/217.182110.3139/217.1821Search in Google Scholar

Gauthier, G., Mark, A., Boulet, B., Haurani, A., Girard, P. and Diraddo, R., "A New Absorption Based Model for Sheet Reheat in Thermoforming", SPE ANTEC Tech. Papers, 353–357 (2005)Search in Google Scholar

Gilham, E., "Lean Manufacturing", SPE European Thermoforming Division Conference, Sitges Barcelona (2016)Search in Google Scholar

Haji, N., Spruiell, J. E., "Radiation Pyrometry on Semitransparent Sheets. I: Gray Media", Polym. Eng. Sci., 34, 116–121 (1994a), DOI:10.1002/pen.76034020710.1002/pen.760340207Search in Google Scholar

Haji, N., Spruiell, J. E., "Radiation Pyrometry on Semitransparent Sheets. II: Media with Wavelength Dependent Absorption Coefficient", Polym. Eng. Sci., 34, 122–127 (1994b), DOI:10.1002/pen.76034020810.1002/pen.760340208Search in Google Scholar

Holman, J. L.: Heat Transfer, °th Edition, McGraw-Hill, New York (1997)Search in Google Scholar

Le Maoult, Y., Schmidt, F., "Chapter 13 Infrared Radiation Applied to Polymer Processes", in Heat Transfer in Polymer Composite Materials, Boyard, N. (Ed.), Wiley & Sons, Hoboken, p. 385 (2016), DOI:10.1002/9781119116288.ch1310.1002/9781119116288.ch13Search in Google Scholar

Lee, J. K., Virkler, T. L. and Scott, C. E., "Effects of Rheological Properties and Processing Parameters on ABS Thermoforming", Polym. Eng. Sci., 41, 240–261 (2001a), DOI:10.1002/pen.1072510.1002/pen.10725Search in Google Scholar

Lee, J. K., Virkler, T. L. and Scott, C. E., "Influence of Initial Sheet Temperature on ABS Thermoforming", Polym. Eng. Sci., 41, 1830–1844 (2001b), DOI:10.1002/pen.1088010.1002/pen.10880Search in Google Scholar

Marathe, D., Rokade, D., Busher Azad, L., Jadhav, K., Mahajan, S., Ahmad, Z., Gupta, S., Kulkarni, S., Juvekar, V. and Lele, A., "Effect of Plug Temperature on the Strain and Thickness Distribution of Components Made by Plug Assist Thermoforming", Int. Polym. Proc., 31, 166–178 (2016), DOI:10.3139/217.306010.3139/217.3060Search in Google Scholar

Modirnia, R., Boulet, B., "Model-Based Virtual Sensors and Core-Temperature Observers in Thermoforming Applications", IEEE Trans. Ind. App., 49, 721–730 (2013), DOI:10.1109/TIA.2013.224454410.1109/TIA.2013.2244544Search in Google Scholar

Monteix, S., Schmidt, F., Le Maoult, Y., Ben Yedder, R., Diraddo, R. W. and Laroche, D., "Experimental Study and Numerical Simulation of Preform or Sheet Exposed to Infrared Radiative Heating", J. Mater. Process. Technol., 119, 90–97 (2001), DOI:10.1016/S0924-0136(01)00882-210.1016/S0924-0136(01)00882-2Search in Google Scholar

Progelhof, R. C., Quintiere, J., "Temperature Distribution in Semitransparent Plastic Sheets Exposed to Symmetric, Unsymmetric and Pulsed Radiant Heating and Surface Cooling", J. Appl. Polym. Sci., 17, 1227–1252 (1973), DOI:10.1002/app.1973.07017041810.1002/app.1973.070170418Search in Google Scholar

Puehringer, J. F., Zitzenbacher, G. and Spreitzer, C., "Study of Heat Absorption in the Thermoforming Process for Transparent and Filled Polystyrene", Proceedings of the 27th PPS Conference, Marrakech (2011)Search in Google Scholar

Rousseau, B.: "Chapter 13 Thermal Radiative Properties of Polymers and Associated Composites", in Heat Transfer in Polymer Composite Materials, Boyard, N. (Ed.), Wiley & Sons, Hoboken, p. 35910.1002/9781119116288.ch12Search in Google Scholar

Throne, J. L.: Technology of Thermoforming, 1st Edition, Hanser Gardner Publications, Munich (1996), DOI:10.3139/9783446402478.00110.3139/9783446402478.001Search in Google Scholar

Throne, J. L., "Heating Semitransparent Polymers in Thermoforming", Thermoforming Quarterly, 18, 7–12 (1999)Search in Google Scholar

Yousefi, A., Bendada, A and Diraddo, R., "Improved Modeling for the Reheat Phase in Thermoforming through an Uncertainty Treatment of the Key Parameters", Polym. Eng. Sci., 42, 1115–1129 (2002), DOI:10.1002/pen.1101610.1002/pen.11016Search in Google Scholar

Received: 2020-05-04
Accepted: 2021-01-26
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 28.1.2023 from
Scroll Up Arrow