Abstract
Ethylene-butene copolymer (EBC)/carbon-fiber (CF) composites can be utilized as an electromechanical material due to their ability to change electric resistance with mechanical strain. The electro-mechanical properties and thermal conductivity of ethylene butene copolymer (EBC) composites with carbon fibers were studied. Carbon fibers were introduced to EBC with various concentrations (5 to 25 wt%). The results showed that carbon fibers’ addition to EBC improves the electric conductivity up to 10 times. Increasing the load up to 2.9 MPa will raise the electric resistance change by 4 500% for a 25% fiber sample. It is also noted that the EBC/CF composites’ electric resistance underwent a dramatic increase in raising the strain. For example, the resistance change was around 13 times higher at 15% strain compared to 5% strain. The thermal conductivity tests showed that the addition of carbon fibers increases the thermal conductivity by 40%, from 0.19 to 0.27 Wm–1K–1.
Acknowledgements
This work was supported by the Internal Grant Agency (IGA/FT/2017/007) of the Tomas Bata University in Zlin.
References
Akhtar, I., Chang, S. H., "Highly Aligned Carbon Nanotubes and their Sensor Applications", Nanoscale, 12, 21447–21458 (2020), DOI:10.1039/d0nr05951j10.1039/d0nr05951jSearch in Google Scholar
Bautista-Quijano, J. R., Potschke, P., Brunig, H. and Heinrich, G., "Strain Sensing, Electrical and Mechanical Properties of Polycarbonate/Multiwall Carbon Nanotube Monofilament Fibers Fabricated by Melt Spinning", Polymer, 82, 181–189 (2016), DOI:10.1016/j.polymer.2015.11.03010.1016/j.polymer.2015.11.030Search in Google Scholar
Ferreira, A., Lanceros-Mendez, S., "Piezoresistive Response of Spray-Printed Carbon Nanotube/Poly(vinylidene fluoride) Composites", Composites Part B, 96, 242–247 (2016), 10.1016/j.compositesb.2016.03.098Search in Google Scholar
George, J. J., Bhowmick, A. K., "Influence of Matrix Polarity on the Properties of Ethylene Vinyl Acetate-Carbon Nanofiller Nanocomposites", Nanoscale Res. Lett., 4, 655–64 (2009), DOI:10.1007/s11671-009-9296-°10.1007/s11671-009-9296-°Search in Google Scholar
Hamid, Y., Abu Bakar, A. and Deirram, N.,"Mechanical and Morphological Properties of Waste Eurycoma Longifolia Fiber/Montmorillonite Reinforced Poly(vinyl chloride) Hybrid Composites", J. Appl. Polym. Sci., 128, 1170–1175 (2013), DOI:10.1002/app.3840110.1002/app.38401Search in Google Scholar
Hamid, Y., Svoboda, P., "Investigation of the Influence of Carbon Black on the Rheology and Electromechanical Properties of Ethylene Butene Copolymer", Mater. Res. Express, 7, (2020), DOI:10.1088/2053-1591/abd19γ10.1088/2053-1591/abd19γSearch in Google Scholar
Hamid, Y., Svoboda, P. and Svobodova, D., "Influence of Electron Beam Irradiation on High-Temperature Mechanical Properties of Ethylene Vinyl Acetate/Carbon Fibers Composites", J. Vinyl Add. Tech., 26, 325–335 (2020), DOI:10.1002/vnl.2174710.1002/vnl.21747Search in Google Scholar
Hu, J. T., Huang, Y., Zeng, X. L., Li, Q., Ren, L. L., Sun, R., Xu, J. B. and Wong, C. P., "Polymer Composite with Enhanced Thermal Conductivity and Mechanical Strength through Orientation Manipulating of BN", Compos.Sci. Technol., 160, 127–137 (2018), 10.1016/j.compscitech.2018.01.045Search in Google Scholar
Huang, Y. T., Inomata, N., Wang, Z. Q., Lin, Y. C. and Ono, T., "Flexible Porous Carbon Black-Polymer Composites with a High Gauge Factor", Sens. Mater., 32, 2527–2538 (2020), DOI:10.18494/Sam.2020.285310.18494/Sam.2020.2853Search in Google Scholar
Ibrahim, S. S., Ayesh, A. S.,"Electrical and Optical Properties of Functionalized Multiwalled Carbon Nanotubes/Poly(3-octylthiophene)/ Polystyrene Composites", J. Thermoplast. Compos. Mater., 28, 225–240 (2013), DOI:10.1177/089270571348051710.1177/0892705713480517Search in Google Scholar
Imiela, M., Anyszka, R., Bielinski, D. M., Pedzich, Z., Zarzecka-Napierala, M. and Szumera, M., "Effect of Carbon Fibers on Thermal Properties and Mechanical Strength of Ceramizable Composites Based on Silicone Rubber", J. Therm. Anal. Calorim., 124, 197–203 (2016), DOI:10.1007/s10973-015-5115-x10.1007/s10973-015-5115-xSearch in Google Scholar
Kim, G. H., Lee, D., Shanker, A., Shao, L., Kwon, M. S., Gidley, D., Kim, J. and Pipe, K. P., "High Thermal Conductivity in Amorphous Polymer Blends by Engineered Interchain Interactions", Nat. Mater., 14, 295–300 (2015), DOI:10.1038/nmat414110.1038/nmat4141Search in Google Scholar
Krause, B., Rzeczkowski, P. and Potschke, P., "Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing Mixtures of Carbon-Based Fillers", Polymers (Basel), 11, 1073 (2019), DOI:10.3390/polym1106107310.3390/polym11061073Search in Google Scholar
Li, X., Levy, C. and Elaadil, L.,"Multiwalled Carbon Nanotube Film for Strain Sensing", Nanotechnology, 19, 045501 (2008), DOI:10.1088/0957-4484/19/04/04550110.1088/0957-4484/19/04/045501Search in Google Scholar
Liang, H. W., Guan, Q. F., Chen, L. F., Zhu, Z., Zhang, W. J. and Yu, S. H., "Macroscopic-Scale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and their Applications", Angew. Chem. Int. Ed., 51, 5101–5 (2012), DOI:10.1002/anie.20120071010.1002/anie.201200710Search in Google Scholar
Liang, J. C., Ding, C., Wei, Z. Y., Sang, L., Song, P., Chen, G. Y., Chang, Y., Xu, J. T. and Zhang, W. X., "Mechanical, Morphology, and Thermal Properties of Carbon Fiber Reinforced Poly(butylene succinate) Composites", Polym. Compos., 36, 1335–1345 (2015), DOI:10.1002/pc.2303810.1002/pc.23038Search in Google Scholar
Liao, X. Q., Zhang, Z., Kang, Z., Gao, F. F., Liao, Q. L. and Zhang, Y., "Ultrasensitive and Stretchable Resistive Strain Sensors Designed for Wearable Electronics", Mater. Horiz., 4, 502–510 (2017), DOI:10.1039/γ7 mh00071e10.1039/γ7mh00071eSearch in Google Scholar
Mehra, N., Mu, L. W., Ji, T., Yang, X. T., Kong, J., Gu, J. W. and Zhu, J. H., "Thermal Transport in Polymeric Materials and across Composite Interfaces", Appl. Mater. Today, 12, 92–130 (2018), DOI:10.1016/j.apmt.2018.04.00410.1016/j.apmt.2018.04.004Search in Google Scholar
Patole, S. P., Reddy, S. K., Schiffer, A., Askar, K., Prusty, B. G. and Kumar, S., "Piezoresistive and Mechanical Characteristics of Graphene Foam Nanocomposites", ACS Appl. Nano Mater., 2, 1402–1411 (2019), DOI:10.1021/acsanm.°b0230610.1021/acsanm.°b02306Search in Google Scholar
Rahman, M. S., "Evaluation of the Precision of the Modified Fitch Method for Thermal Conductivity Measurement of Foods", J. Food Eng., 14, 71–82 (1991), DOI:10.1016/0260-8774(91)90054-v10.1016/0260-8774(91)90054-vSearch in Google Scholar
Ren, L. L., Li, Q., Lu, J. B., Zeng, X. L., Sun, R., Wu, J. B., Xu, J. B. and Wong, C. P., "Enhanced Thermal Conductivity for Ag-Deposited Alumina Sphere/Epoxy Resin Composites through Manipulating Interfacial Thermal Resistance", Composites Part A, 107, 561–569 (2018), 10.1016/j.compositesa.2018.02.010Search in Google Scholar
Sanchez-Garcia, M. D., Gimenez, E. and Lagaron, J. M., "Morphology and Barrier Properties of Solvent Cast Composites of Thermoplastic Biopolymers and Purified Cellulose Fibers", Carbohydr. Polym., 71, 235–244 (2008), DOI:10.1016/j.carbpol.2007.05.04110.1016/j.carbpol.2007.05.041Search in Google Scholar
Shen, Z. L., Zhou, H. Y., "Mechanical and Electrical Behavior of Carbon Fiber Structural Capacitors: Effects of Delamination and Interlaminar Damage", Compos. Struct., 166, 38–48 (2017), 10.1016/j.compstruct.2016.12.062Search in Google Scholar
Slobodian, P., Olejnik, R., Matyas, J. and Babar, D. G., "Improving Sensitivity of the Polyurethane/CNT Laminate Strain Sensor by Controlled Mechanical Preload", 5th International Conference on Materials and Applications for Sensors and Transducers (Ic-Mast2015), 108, (2016a), DOI:10.1088/1757-899x/108/1/01202210.1088/1757-899x/108/1/012022Search in Google Scholar
Slobodian, P., Riha, P., Lengalova, A. and Saha, P., "Compressive Stress-Electrical Conductivity Characteristics of Multiwall Carbon Nanotube Networks", J. Mater. Sci., 46, 3186–3190 (2011), DOI:10.1007/s10853-010-5202-010.1007/s10853-010-5202-0Search in Google Scholar
Slobodian, P., Riha, P., Olejnik, R., Cvelbar, U. and Saha, P., "Enhancing Effect of KMnO4 Oxidation of Carbon Nanotubes Network Embedded in Elastic Polyurethane on Overall Electro-Mechanical Properties of Composite", Compos. Sci. Technol., 81, 54–60 (2013), 10.1016/j.compscitech.2013.03.023Search in Google Scholar
Slobodian, P., Riha, P., Olejnik, R., Matyas, J. and Machovsky, M., "Pre-Strain Stimulation of Electro-Mechanical Sensitivity of Carbon Nanotube Network/Polyurethane Composites", IEEE Sens. J., 16, 5898–5903 (2016b), DOI:10.1109/Jsen.2016.257339810.1109/Jsen.2016.2573398Search in Google Scholar
Slobodian, P., Riha, P. and Saha, P., "A Highly-Deformable Composite Composed of an Entangled Network of Electrically-Conductive Carbon-Nanotubes Embedded in Elastic Polyurethane", Carbon, 50, 3446–3453 (2012), DOI:10.1016/j.carbon.2012.03.00810.1016/j.carbon.2012.03.008Search in Google Scholar
Sonawane, S., Thakur, P. and Paul, R., "Study on Thermal Property Enhancement of MWCNT Based Polypropylene (PP) Nanocomposites", Materials Today-Proceedings, 27, 550–555 (2020), DOI:10.1016/j.matpr.2019.12.01810.1016/j.matpr.2019.12.018Search in Google Scholar
Svoboda, P., Theravalappil, R., Poongavalappil, S., Vilcakova, J., Svobodova, D., Mokrejs, P. and Blaha, A., "A Study on Electrical and Thermal Conductivities of Ethylene-Octene Copolymer/Expandable Graphite Composites", Polym. Eng. Sci., 52, 1241–1249 (2012), DOI:10.1002/pen.2219210.1002/pen.22192Search in Google Scholar
Theravalappil, R., Svoboda, P., Vilcakova, J., Poongavalappil, S., Slobodian, P. and Svobodova, D., "A Comparative Study on the Electrical, Thermal and Mechanical Properties of Ethylene-Octene Copolymer Based Composites with Carbon Fillers", Mater. Des., 60, 458–467 (2014), DOI:10.1016/j.matdes.2014.04.02910.1016/j.matdes.2014.04.029Search in Google Scholar
Wang, S. K., Chung, D. D. L., "Self-Sensing of Flexural Strain and Damage in Carbon Fiber Polymer-Matrix Composite by Electrical Resistance Measurement", Carbon, 44, 2739–2751 (2006), DOI:10.1016/j.carbon.2006.03.03410.1016/j.carbon.2006.03.034Search in Google Scholar
Xiao, H. G., Li, H. and Ou, J. P., "Modeling of Piezoresistivity of Carbon Black Filled Cement-Based Composites under Multi-Axial Strain", Sens. Actuators, A, 160, 87–93 (2010), DOI:10.1016/j.sna.2010.04.02710.1016/j.sna.2010.04.027Search in Google Scholar
Zhou, B., Luo, W., Yang, J. Q., Duan, X. B., Wen, Y. W., Zhou, H. M., Chen, R. and Shan, B., "Thermal Conductivity of Aligned CNT/ Polymer Composites Using Mesoscopic Simulation", Composites Part A, 90, 410–416 (2016), 10.1016/j.compositesa.2016.07.023Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany