Accessible Requires Authentication Published by De Gruyter September 15, 2021

A Study on Thermal and Electrical Conductivities of Ethylene-Butene Copolymer Composites with Carbon Fibers

Y. Hamid and P. Svoboda


Ethylene-butene copolymer (EBC)/carbon-fiber (CF) composites can be utilized as an electromechanical material due to their ability to change electric resistance with mechanical strain. The electro-mechanical properties and thermal conductivity of ethylene butene copolymer (EBC) composites with carbon fibers were studied. Carbon fibers were introduced to EBC with various concentrations (5 to 25 wt%). The results showed that carbon fibers’ addition to EBC improves the electric conductivity up to 10 times. Increasing the load up to 2.9 MPa will raise the electric resistance change by 4 500% for a 25% fiber sample. It is also noted that the EBC/CF composites’ electric resistance underwent a dramatic increase in raising the strain. For example, the resistance change was around 13 times higher at 15% strain compared to 5% strain. The thermal conductivity tests showed that the addition of carbon fibers increases the thermal conductivity by 40%, from 0.19 to 0.27 Wm–1K–1.


This work was supported by the Internal Grant Agency (IGA/FT/2017/007) of the Tomas Bata University in Zlin.


Akhtar, I., Chang, S. H., "Highly Aligned Carbon Nanotubes and their Sensor Applications", Nanoscale, 12, 21447–21458 (2020), DOI:10.1039/d0nr05951j Search in Google Scholar

Bautista-Quijano, J. R., Potschke, P., Brunig, H. and Heinrich, G., "Strain Sensing, Electrical and Mechanical Properties of Polycarbonate/Multiwall Carbon Nanotube Monofilament Fibers Fabricated by Melt Spinning", Polymer, 82, 181–189 (2016), DOI:10.1016/j.polymer.2015.11.030 Search in Google Scholar

Ferreira, A., Lanceros-Mendez, S., "Piezoresistive Response of Spray-Printed Carbon Nanotube/Poly(vinylidene fluoride) Composites", Composites Part B, 96, 242–247 (2016), 10.1016/j.compositesb.2016.03.098 Search in Google Scholar

George, J. J., Bhowmick, A. K., "Influence of Matrix Polarity on the Properties of Ethylene Vinyl Acetate-Carbon Nanofiller Nanocomposites", Nanoscale Res. Lett., 4, 655–64 (2009), DOI:10.1007/s11671-009-9296-° Search in Google Scholar

Hamid, Y., Abu Bakar, A. and Deirram, N.,"Mechanical and Morphological Properties of Waste Eurycoma Longifolia Fiber/Montmorillonite Reinforced Poly(vinyl chloride) Hybrid Composites", J. Appl. Polym. Sci., 128, 1170–1175 (2013), DOI:10.1002/app.38401 Search in Google Scholar

Hamid, Y., Svoboda, P., "Investigation of the Influence of Carbon Black on the Rheology and Electromechanical Properties of Ethylene Butene Copolymer", Mater. Res. Express, 7, (2020), DOI:10.1088/2053-1591/abd19γ Search in Google Scholar

Hamid, Y., Svoboda, P. and Svobodova, D., "Influence of Electron Beam Irradiation on High-Temperature Mechanical Properties of Ethylene Vinyl Acetate/Carbon Fibers Composites", J. Vinyl Add. Tech., 26, 325–335 (2020), DOI:10.1002/vnl.21747 Search in Google Scholar

Hu, J. T., Huang, Y., Zeng, X. L., Li, Q., Ren, L. L., Sun, R., Xu, J. B. and Wong, C. P., "Polymer Composite with Enhanced Thermal Conductivity and Mechanical Strength through Orientation Manipulating of BN", Compos.Sci. Technol., 160, 127–137 (2018), 10.1016/j.compscitech.2018.01.045 Search in Google Scholar

Huang, Y. T., Inomata, N., Wang, Z. Q., Lin, Y. C. and Ono, T., "Flexible Porous Carbon Black-Polymer Composites with a High Gauge Factor", Sens. Mater., 32, 2527–2538 (2020), DOI:10.18494/Sam.2020.2853 Search in Google Scholar

Ibrahim, S. S., Ayesh, A. S.,"Electrical and Optical Properties of Functionalized Multiwalled Carbon Nanotubes/Poly(3-octylthiophene)/ Polystyrene Composites", J. Thermoplast. Compos. Mater., 28, 225–240 (2013), DOI:10.1177/0892705713480517 Search in Google Scholar

Imiela, M., Anyszka, R., Bielinski, D. M., Pedzich, Z., Zarzecka-Napierala, M. and Szumera, M., "Effect of Carbon Fibers on Thermal Properties and Mechanical Strength of Ceramizable Composites Based on Silicone Rubber", J. Therm. Anal. Calorim., 124, 197–203 (2016), DOI:10.1007/s10973-015-5115-x Search in Google Scholar

Kim, G. H., Lee, D., Shanker, A., Shao, L., Kwon, M. S., Gidley, D., Kim, J. and Pipe, K. P., "High Thermal Conductivity in Amorphous Polymer Blends by Engineered Interchain Interactions", Nat. Mater., 14, 295–300 (2015), DOI:10.1038/nmat4141 Search in Google Scholar

Krause, B., Rzeczkowski, P. and Potschke, P., "Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing Mixtures of Carbon-Based Fillers", Polymers (Basel), 11, 1073 (2019), DOI:10.3390/polym11061073 Search in Google Scholar

Li, X., Levy, C. and Elaadil, L.,"Multiwalled Carbon Nanotube Film for Strain Sensing", Nanotechnology, 19, 045501 (2008), DOI:10.1088/0957-4484/19/04/045501 Search in Google Scholar

Liang, H. W., Guan, Q. F., Chen, L. F., Zhu, Z., Zhang, W. J. and Yu, S. H., "Macroscopic-Scale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and their Applications", Angew. Chem. Int. Ed., 51, 5101–5 (2012), DOI:10.1002/anie.201200710 Search in Google Scholar

Liang, J. C., Ding, C., Wei, Z. Y., Sang, L., Song, P., Chen, G. Y., Chang, Y., Xu, J. T. and Zhang, W. X., "Mechanical, Morphology, and Thermal Properties of Carbon Fiber Reinforced Poly(butylene succinate) Composites", Polym. Compos., 36, 1335–1345 (2015), DOI:10.1002/pc.23038 Search in Google Scholar

Liao, X. Q., Zhang, Z., Kang, Z., Gao, F. F., Liao, Q. L. and Zhang, Y., "Ultrasensitive and Stretchable Resistive Strain Sensors Designed for Wearable Electronics", Mater. Horiz., 4, 502–510 (2017), DOI:10.1039/γ7 mh00071e Search in Google Scholar

Mehra, N., Mu, L. W., Ji, T., Yang, X. T., Kong, J., Gu, J. W. and Zhu, J. H., "Thermal Transport in Polymeric Materials and across Composite Interfaces", Appl. Mater. Today, 12, 92–130 (2018), DOI:10.1016/j.apmt.2018.04.004 Search in Google Scholar

Patole, S. P., Reddy, S. K., Schiffer, A., Askar, K., Prusty, B. G. and Kumar, S., "Piezoresistive and Mechanical Characteristics of Graphene Foam Nanocomposites", ACS Appl. Nano Mater., 2, 1402–1411 (2019), DOI:10.1021/acsanm.°b02306 Search in Google Scholar

Rahman, M. S., "Evaluation of the Precision of the Modified Fitch Method for Thermal Conductivity Measurement of Foods", J. Food Eng., 14, 71–82 (1991), DOI:10.1016/0260-8774(91)90054-v Search in Google Scholar

Ren, L. L., Li, Q., Lu, J. B., Zeng, X. L., Sun, R., Wu, J. B., Xu, J. B. and Wong, C. P., "Enhanced Thermal Conductivity for Ag-Deposited Alumina Sphere/Epoxy Resin Composites through Manipulating Interfacial Thermal Resistance", Composites Part A, 107, 561–569 (2018), 10.1016/j.compositesa.2018.02.010 Search in Google Scholar

Sanchez-Garcia, M. D., Gimenez, E. and Lagaron, J. M., "Morphology and Barrier Properties of Solvent Cast Composites of Thermoplastic Biopolymers and Purified Cellulose Fibers", Carbohydr. Polym., 71, 235–244 (2008), DOI:10.1016/j.carbpol.2007.05.041 Search in Google Scholar

Shen, Z. L., Zhou, H. Y., "Mechanical and Electrical Behavior of Carbon Fiber Structural Capacitors: Effects of Delamination and Interlaminar Damage", Compos. Struct., 166, 38–48 (2017), 10.1016/j.compstruct.2016.12.062 Search in Google Scholar

Slobodian, P., Olejnik, R., Matyas, J. and Babar, D. G., "Improving Sensitivity of the Polyurethane/CNT Laminate Strain Sensor by Controlled Mechanical Preload", 5th International Conference on Materials and Applications for Sensors and Transducers (Ic-Mast2015), 108, (2016a), DOI:10.1088/1757-899x/108/1/012022 Search in Google Scholar

Slobodian, P., Riha, P., Lengalova, A. and Saha, P., "Compressive Stress-Electrical Conductivity Characteristics of Multiwall Carbon Nanotube Networks", J. Mater. Sci., 46, 3186–3190 (2011), DOI:10.1007/s10853-010-5202-0 Search in Google Scholar

Slobodian, P., Riha, P., Olejnik, R., Cvelbar, U. and Saha, P., "Enhancing Effect of KMnO4 Oxidation of Carbon Nanotubes Network Embedded in Elastic Polyurethane on Overall Electro-Mechanical Properties of Composite", Compos. Sci. Technol., 81, 54–60 (2013), 10.1016/j.compscitech.2013.03.023 Search in Google Scholar

Slobodian, P., Riha, P., Olejnik, R., Matyas, J. and Machovsky, M., "Pre-Strain Stimulation of Electro-Mechanical Sensitivity of Carbon Nanotube Network/Polyurethane Composites", IEEE Sens. J., 16, 5898–5903 (2016b), DOI:10.1109/Jsen.2016.2573398 Search in Google Scholar

Slobodian, P., Riha, P. and Saha, P., "A Highly-Deformable Composite Composed of an Entangled Network of Electrically-Conductive Carbon-Nanotubes Embedded in Elastic Polyurethane", Carbon, 50, 3446–3453 (2012), DOI:10.1016/j.carbon.2012.03.008 Search in Google Scholar

Sonawane, S., Thakur, P. and Paul, R., "Study on Thermal Property Enhancement of MWCNT Based Polypropylene (PP) Nanocomposites", Materials Today-Proceedings, 27, 550–555 (2020), DOI:10.1016/j.matpr.2019.12.018 Search in Google Scholar

Svoboda, P., Theravalappil, R., Poongavalappil, S., Vilcakova, J., Svobodova, D., Mokrejs, P. and Blaha, A., "A Study on Electrical and Thermal Conductivities of Ethylene-Octene Copolymer/Expandable Graphite Composites", Polym. Eng. Sci., 52, 1241–1249 (2012), DOI:10.1002/pen.22192 Search in Google Scholar

Theravalappil, R., Svoboda, P., Vilcakova, J., Poongavalappil, S., Slobodian, P. and Svobodova, D., "A Comparative Study on the Electrical, Thermal and Mechanical Properties of Ethylene-Octene Copolymer Based Composites with Carbon Fillers", Mater. Des., 60, 458–467 (2014), DOI:10.1016/j.matdes.2014.04.029 Search in Google Scholar

Wang, S. K., Chung, D. D. L., "Self-Sensing of Flexural Strain and Damage in Carbon Fiber Polymer-Matrix Composite by Electrical Resistance Measurement", Carbon, 44, 2739–2751 (2006), DOI:10.1016/j.carbon.2006.03.034 Search in Google Scholar

Xiao, H. G., Li, H. and Ou, J. P., "Modeling of Piezoresistivity of Carbon Black Filled Cement-Based Composites under Multi-Axial Strain", Sens. Actuators, A, 160, 87–93 (2010), DOI:10.1016/j.sna.2010.04.027 Search in Google Scholar

Zhou, B., Luo, W., Yang, J. Q., Duan, X. B., Wen, Y. W., Zhou, H. M., Chen, R. and Shan, B., "Thermal Conductivity of Aligned CNT/ Polymer Composites Using Mesoscopic Simulation", Composites Part A, 90, 410–416 (2016), 10.1016/j.compositesa.2016.07.023 Search in Google Scholar

Received: 2020-06-30
Accepted: 2021-02-16
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany