Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 14, 2021

Effect of Basalt Intraply Fiber Hybridization on the Compression Behavior of Filament Wound Composite Pipes

Ö. Özbek EMAIL logo , Ö. Y. Bozkurt and A. Erkliğ


The current study deals with the effect of basalt fiber hybridization on the compressive properties of composite pipes reinforced with glass fiber and carbon fiber. Hybrid and non-hybrid fiber reinforced pipes (FRPs) were fabricated through wet filament winding technique. Intraply fiber winding structure in which different fiber types were simultaneously wound at the layer was employed for the hybridization. The FRP samples wound by different fiber winding angles (± (40°), ± (55°), ± (70°)) were prepared in order to gain a better insight on the influence of basalt intraply fiber hybridization. The compression properties of FRP samples were experimentally determined by quasi-static compression tests using external parallel-plates for both the axial and radial directions. The non-hybrid carbon FRP pipes showed the maximum axial compression strength in parallel to the highest strength and lowest ductility of carbon fibers, while the minimum axial compression strength was obtained for the non-hybrid pipes reinforced with basalt fibers that, in comparison, exhibit much less strength and higher ductility. The pipes submitted to the axial compression tests predominantly failed due to the development of cracks and buckling along the fiber direction. While the inclusion of basalt fiber reduced the axial compression behavior of the non-hybrid carbon and glass FRP samples, it improved that behavior in the radial compression tests. Delamination was determined as the major failure mode for the damaged FRPs under radial compression. It is found that the incorporation of basalt fiber provides improvements in radial compression properties as opposed to axial compression properties and in the same manner the increment in fiber winding angle makes a positive contribution to radial compression properties.

* Mail address: Özkan Özbek, Mechanical Engineering Department, Faculty of Engineering and Architecture, Kilis 7 Aralık University, 79000, Kilis, Turkey


Financial support for the raw materials was supplied from Gaziantep University Scientific Research Projects Center (BAP) under grant number MF.DT.16.13.


Almeida Jr., J. H. S., Tonatto, M. L., Ribeiro, M. L., Tita, V. and Amico, S. C., “Buckling and Post-Buckling of Filament Wound Composite Tubes under Axial Compression: Linear, Nonlinear, Damage and Experimental Analyses", Composites, Part B., 149, 227–239 (2018), DOI:10.1016/j.compositesb.2018.05.00410.1016/j.compositesb.2018.05.004Search in Google Scholar

Arbelaiz, A., Fernandez, B., Cantero, G., Llano-Ponte, R., Valea, A. and Mondragon, I., “Mechanical Properties of Flax Fibre/Polypropylene Composites. Influence of Fibre/Matrix Modification and Glass Fibre Hybridization", Composites, Part A, 36, 1637–1644 (2005), DOI:10.1016/j.compositesa.2005.03.02110.1016/j.compositesa.2005.03.021Search in Google Scholar

ASTM D2584, “Standard Test Method for Ignition Loss of Cured Reinforced Resins", American Society for Testing and Materials, Vol. 100, (2002), DOI:10.1520/D2584-1110.1520/D2584-11Search in Google Scholar

ASTM, D695, “Standard Test Method for Compressive Properties of Rigid Plastics", American Society for Testing and Materials (2002), DOI:10.1520/D0695-1510.1520/D0695-15Search in Google Scholar

ASTM, D2412, “Standard Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading", American Society for Testing and Materials, (2010), DOI:10.1520/D2412-0210.1520/D2412-02Search in Google Scholar

Bakar, M. S. A., Salit, M. S., Yusoff, M. Z. M., Zainudin, E. S. and Ya, H. H., “The Crashworthiness Performance of Stacking Sequence on Filament Wound Hybrid Composite Energy Absorption Tube Subjected to Quasi-Static Compression Load", J. Mater. Res. Technol., 9, 654–666 (2020), DOI:10.1016/j.jmrt.2019.11.00610.1016/j.jmrt.2019.11.006Search in Google Scholar

Banibayat, P., Patnaik, A., “Variability of Mechanical Properties of Basalt Fiber Reinforced Polymer Bars Manufactured by Wet-Layup Method", Mater. Des., 56, 898–906 (2014), DOI:10.1016/j.matdes.2013.11.08110.1016/j.matdes.2013.11.081Search in Google Scholar

Bozkurt, Ö. Y., “Hybridization Effects on Tensile and Bending Behavior of Aramid/Basalt Fiber Reinforced Epoxy Composites", Polym. Compos., 38, 1144–1150 (2017), DOI:10.1002/pc.2367710.1002/pc.23677Search in Google Scholar

Bozkurt, Ö. Y., Gökdemir, M. E., “Effect of Basalt Fiber Hybridization on the Vibration-Damping Behavior of Carbon Fiber/Epoxy Composites" Polym. Compos., 39, E2274-E2282 (2018), DOI:10.1002/pc.2460610.1002/pc.24606Search in Google Scholar

Bozkurt, Ö. Y., Bulut, M. and Özbek, Ö., “Effect of Fibre Windings on Damping and Vibration Characteristics of Basalt Epoxy Composite Laminates", Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE’16), Prague, Czech Republic (2016), DOI:10.11159/icsenm16.11510.11159/icsenm16.115Search in Google Scholar

Chairman, C. A., Kumaresh Babu, S. P., “Mechanical and Abrasive Wear Behavior of Glass and Basalt Fabric-Reinforced Epoxy Composites", J. Appl. Polym. Sci., 130, 120 –130 (2013), DOI:10.1002/app.3915410.1002/app.39154Search in Google Scholar

Dehkordi, M. T., Nosraty, H., Shokrieh, M. M., Minak, G. and Ghelli, D., “Low Velocity Impact Properties of Intra-Ply Hybrid Composites Based on Basalt and Nylon Woven Fabrics", Mater. Des., 31, 3835 –3844 (2010), DOI:10.1016/j.matdes.2010.03.03310.1016/j.matdes.2010.03.033Search in Google Scholar

Demirci, M. T., Tarakçıoğlu, N., Avcı, A., Akdemir, A. and Demirci, I., “Fracture Toughness (Mode I) Characterization of SiO2 Nano-particle Filled Basalt/Epoxy Filament Wound Composite Ring with Split-Disk Test Method", Composites, Part B, 119, 114–124 (2017), DOI:10.1016/j.compositesb.2017.03.04510.1016/j.compositesb.2017.03.045Search in Google Scholar

Dhand, V., Mittal, G., Rhee, K. Y., Park, S. J. and Hui, D., “A Short Review on Basalt Fiber Reinforced Polymer Composites", Composites, Part B, 73, 166 –180 (2015), DOI:10.1016/j.compositesb.2014.12.01110.1016/j.compositesb.2014.12.011Search in Google Scholar

Doğan, N. F., Bulut, M., Erkliğ, A. and Bozkurt, Ö. Y., “Mechanical and Low Velocity Impact Characterization of Carbon/Glass Hybrid Composites with Graphene Nanoplatelets", Mater. Res. Express, 6, 085304 (2019), DOI:10.1088/2053-1591/ab1c0310.1088/2053-1591/ab1c03Search in Google Scholar

Farhood, N. H., Karuppanan, S., Ya, H. H. and Ovinis, M., “Experimental Study of Low Velocity Impact Response of Carbon/Basalt Hybrid Filament Wound Composite Pipes", Int. J. Struct. Stab. Dyn., 18, 1850089 (2018), DOI:10.1142/S021945541850089X10.1142/S021945541850089XSearch in Google Scholar

Farhood, N. H., Karuppanan, S., Ya, H. H. and Ovinis, M., “Effects of Carbon Fiber Hybridization on the Compressive Strength of Glass-Carbon/Epoxy Hybrid Composite Pipes Before and after Low Velocity Impact", Key Engineering Materials, 786, p. 30 –37 (2019), DOI:10.4028/ in Google Scholar

Farley, G. L., “Relationship between Mechanical-Property and Energy-Absorption Trends for Composite Tubes", Volume 3284, National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, Hampton, VA, USA (1992)Search in Google Scholar

Farley, G. L., Jones, R. M., “Crushing Characteristics of Continuous Fiber-Reinforced Composite Tubes", J. Compos. Mater., 26, 37– 50 (1992), DOI 10.1177/002199839202600103, DOI:10.1177/00219983920260010310.1177/002199839202600103Search in Google Scholar

Fitriah, S. N., Majid, M. A., Ridzuan, M. J. M., Daud, R., Gibson, A. G. and Assaleh, T. A., “Influence of Hydrothermal Ageing on the Compressive Behaviour of Glass Fibre/Epoxy Composite Pipes", Compos. Struct., 159, 350 –360 (2017), DOI:10.1016/j.compstruct.2016.09.07810.1016/j.compstruct.2016.09.078Search in Google Scholar

Gemi, L, “Investigation of the Effect of Stacking Sequence on Low Velocity Impact Response and Damage Formation in Hybrid Composite Pipes under Internal Pressure. A Comparative Study", Composites, Part B, 153, 217–232 (2018), DOI:10.1016/J.Compositesb.2018.07.05610.1016/J.Compositesb.2018.07.056Search in Google Scholar

Ha, S. K., Kim, S. J., Nasir, S. U. and Han, S. C., “Design Optimization and Fabrication of a Hybrid Composite Flywheel Rotor", Compos. Struct., 94, 3290–3299 (2012), DOI:10.1016/j.compstruct.2012.04.01510.1016/j.compstruct.2012.04.015Search in Google Scholar

Jamshaid, H. “Basalt Fiber and its Applications", J. Text. Eng. Fash. Technol., 1, 254–255 (2017), DOI:10.15406/jteft.2017.01.0004110.15406/jteft.2017.01.00041Search in Google Scholar

Jamshaid, H., Mishra, R., “A Green Material from Rock: Basalt Fiber– A Review", J. Text. Inst., 107, 923 –937 (2016), DOI:10.1080/00405000.2015.107194010.1080/00405000.2015.1071940Search in Google Scholar

Jarukumjorn, K., Suppakarn, N., “Effect of Glass Fiber Hybridization on Properties of Sisal Fiber–Polypropylene Composites", Composites, Part. B, 40, 623–627 (2009), DOI:10.1016/j.compositesb.2009.04.00710.1016/j.compositesb.2009.04.007Search in Google Scholar

Jia, X., Chen, G., Yu, Y., Li, G., Zhu, J., Luo, X., Chenghong, D., Yang, X. and Hui, D., “Effect of Geometric Factor, Winding Angle and Pre-Crack Angle on Quasi-Static Crushing Behavior of Filament Wound CFRP Cylinder", Composites, Part B, 45, 1336 – 1343 (2013), DOI:10.1016/j.compositesb.2012.09.06010.1016/j.compositesb.2012.09.060Search in Google Scholar

Khandelwal, S., Rhee, K. Y., “Recent Advances in Basalt-Fiber-Reinforced Composites: Tailoring the Fiber-Matrix Interface", Composites, Part B, 108011 (2020), DOI:10.1016/j.compositesb.2020.10801110.1016/j.compositesb.2020.108011Search in Google Scholar

Kretsis, G., “A Review of the Tensile, Compressive, Flexural and Shear Properties of Hybrid Fibre-Reinforced Plastics", Composites, 18, 13–23 (1987), DOI:10.1016/0010-361(87)90003-610.1016/0010-361(87)90003-6Search in Google Scholar

Lapena, M. H., Marinucci, G., “Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube", Mater. Res., 21, 1–7 (2018), DOI:10.1590/1980-5373-mr-2017-032410.1590/1980-5373-mr-2017-0324Search in Google Scholar

Li, W., Xu, J., “Mechanical Properties of Basalt Fiber Reinforced Geopolymeric Concrete under Impact Loading", Mater. Sci. Eng. A, 505, 178–186 (2009), DOI:10.1016/j.msea.2008.11.06310.1016/j.msea.2008.11.063Search in Google Scholar

Liu, H. K., Liao, W. C., Tseng, L., Lee, W. H. and Sawada, Y., “Compression Strength of Pre-Damaged Concrete Cylinders Reinforced by Non-Adhesive Filament Wound Composites", Composites, Part A, 35, 281 –292 (2004), DOI:10.1016/S1359-835X(03)00250-110.1016/S1359-835X(03)00250-1Search in Google Scholar

Liu, H. K., Tai, N. H. and Chen, C. C., “Compression Strength of Concrete Columns Reinforced by Non-Adhesive Filament Wound Hybrid Composites", Composites, Part A, 31, 221 –233 (2000), DOI:10.1016/S1359-835x(99)00075-510.1016/S1359-835x(99)00075-5Search in Google Scholar

Maleki, S., Rafiee, R., Hasannia, A. and Habibagahi, M. R., “Investigating the Influence of Delamination on the Stiffness of Composite Pipes under Compressive Transverse Loading Using Cohesive Zone Method", Front. Struct. Civ. Eng., 13, 1316 –1323 (2019), DOI:10.1007/s11709-019-0555-110.1007/s11709-019-0555-1Search in Google Scholar

Manders, P. W., Bader, M. G., “The Strength of Hybrid Glass/Carbon Fibre Composites", J. Mater. Sci., 16, 2246–2256 (1981), DOI:10.1007/bf0054238710.1007/bf00542387Search in Google Scholar

Mokhtar, I., Yahya, M. Y., Hassan, S. A. and Santulli, C., “Transverse Impact Response of Filament Wound Basalt Composite Tubes", Composites, Part B, 128, 134–145 (2017), DOI:10.1016/j.compositesb.2017.01.00510.1016/j.compositesb.2017.01.005Search in Google Scholar

Moon, C. J., Kim, I. H., Choi, B. H., Kweon, J. H. and Choi, J. H., “Buckling of Filament-Wound Composite Cylinders Subjected to Hydrostatic Pressure for Underwater Vehicle Applications", Compos. Struct., 92, 2241 –2251 (2010), DOI:10.1016/j.msea.2008.11.06310.1016/j.msea.2008.11.063Search in Google Scholar

Najafi, M., Khalili, S. M. R. and Eslami-Farsani, R., “Hybridization Effect of Basalt and Carbon Fibers on Impact and Flexural Properties of Phenolic Composites", Iran. Polym. J., 23, 767–773 (2014), DOI:10.1007/s13726-014-0272-510.1007/s13726-014-0272-5Search in Google Scholar

Naseva, S., Srebrenkoska, V., Risteska, S., Stefanoska, M. and Srebrenkoska, S., “Mechanical Properties of Filament Wound Pipes: Effects of Winding Angles", Quality of Life, 6, 10 –15 (2015), DOI:10.7251/QOL1501010N10.7251/QOL1501010NSearch in Google Scholar

Özbek, Ö., Bozkurt, Ö. Y., Erkliğ, A., “Effect of Glass Fiber Hybridization on Low Velocity Impact Behaviors of Basalt Fiber Reinforced Composite Laminates", Int. J. Mater. Eng. Technol., 3, 21– 29 (2020), DOI:10.31127/tuje.64402510.31127/tuje.644025Search in Google Scholar

Özbek, Ö., Bozkurt, Ö. Y., “Hoop Tensile and Compression Behavior of Glass-Carbon Intraply Hybrid Fiber Reinforced Filament Wound Composite Pipes", Mater. Test., 61, 763–769 (2019), DOI:10.3139/120.11139510.3139/120.111395Search in Google Scholar

Özbek, Ö., Bozkurt, Ö. Y. and Erkliğ, A., “An Experimental Study on Intraply Fiber Hybridization of Filament Wound Composite Pipes Subjected to Quasi-Static Compression Loading", Polym, Test., 79, 106082 (2019), DOI:10.1016/j.polymertesting.2019.10608210.1016/j.polymertesting.2019.106082Search in Google Scholar

Özbek, Ö., Bozkurt, Ö. Y. and Erkliğ, A., “Low Velocity Impact Behaviors of Basalt//Epoxy Reinforced Composite Laminates with Different Fiber Windings", Turk. J. Eng., 4, 197–202 (2020), DOI:10.31127/tuje.64402510.31127/tuje.644025Search in Google Scholar

Özbek, Ö., Doğan, N. F. and Bozkurt, Ö. Y., “An Experimental Investigation on Lateral Crushing Response of Glass/Carbon Intraply Hybrid Filament Wound Composite Pipes", J. Braz. Soc. Mech. Sci. & Eng., 42, 1–13 (2020), DOI:10.1007/S40430-020-02475-310.1007/S40430-020-02475-3Search in Google Scholar

Sarasini, F., Tirillò, J., Ferrante, L., Valente, M., Valente, T., Lampani, L., Gaudenzi, P., Iannace, S. and Sorrentino, L., “Drop-Weight Impact Behaviour of Woven Hybrid Basalt–Carbon/Epoxy Composites", Composites, Part B., 59, 204–220 (2014), DOI:10.1016/j.compositesb.2013.12.00610.1016/j.compositesb.2013.12.006Search in Google Scholar

Sarasini, F., Tirillò, J., Valente, M., Valente, T., Cioffi, S., Iannace, S. and Sorrentino, L., “Effect of Basalt Fiber Hybridization on the Impact Behavior under Low Impact Velocity of Glass/Basalt Woven Fabric/Epoxy Resin Composites", Composites, Part A, 47, 109 – 123 (2013), DOI:10.1016/j.compositesa.2012.11.02110.1016/j.compositesa.2012.11.021Search in Google Scholar

Shishevan, F. A., Akbulut, H., “Low-Velocity Impact Behavior of Carbon/Basalt Fiber-Reinforced Intra-Ply Hybrid Composites", Iran. J. Sci. & Technol., Transactions of Mechanical Engineering, 43, 225–234 (2019), DOI:10.1007/S40997-018-0151-310.1007/S40997-018-0151-3Search in Google Scholar

Shishoo, R. L., “Technical Textiles – Technological and Market Developments and Trends", Indian J. Fibre Text. Res., 22, 213–221 (1997)Search in Google Scholar

Soden, P. D., Kitching, R., Tse, P. C., Tsavalas, Y. and Hinton, M. J., “Influence of Winding Angle on the Strength and Deformation of Filament-Wound Composite Tubes Subjected to Uniaxial and Biaxial Loads", Compos. Sci. Technol., 46, 363–378 (1993), DOI:10.1016/0266-3538(93)90182-G10.1016/0266-3538(93)90182-GSearch in Google Scholar

Subagia, I. A., Kim, Y., Tijing, L. D., Kim, C. S. and Shon, H. K., "Effect of Stacking Sequence on the Flexural Properties of Hybrid Composites Reinforced with Carbon and Basalt Fibers", Composites, Part B, 58, 251 –258 (2014), DOI:10.1016/j.compositesb.2013.10.02710.1016/j.compositesb.2013.10.027Search in Google Scholar

Suresh, G., Jayakumari, L. S., “Analyzing the Mechanical Behavior of E-Glass Fibre-Reinforced Interpenetrating Polymer Network Composite Pipe", J. Compos. Mater., 50, 3053 –3061 (2016), DOI:10.1177/002199831561540810.1177/0021998315615408Search in Google Scholar

Swolfs, Y., Gorbatikh, L. and Verpoest, I., “Fibre Hybridisation in Polymer Composites: A Review", Composites, Part A, 67, 181 – 200 (2014), DOI:10.1016/j.compositesa.2014.08.02710.1016/j.compositesa.2014.08.027Search in Google Scholar

Üstün, T., Eskizeybek, V. and Avci, A., “Enhanced Fatigue Performances of Hybrid Nanoreinforced Filament Wound Carbon/Epoxy Composite Pipes", Compos. Struct., 150, 124 –131 (2016), DOI:10.1016/j.compstruct.2016.05.01210.1016/j.compstruct.2016.05.012Search in Google Scholar

Yan, R., Wang, R., Lou, C. W. and Lin, J. H., “Comparison of Tensile and Compressive Characteristics of Intra/Interply Hybrid Laminates Reinforced High-Density Flexible Foam Composites", J. Appl. Polym. Sci., 132, 41438 (2015), DOI:10.1002/app.4143810.1002/app.41438Search in Google Scholar

Zhang, C. H., Zhang, J. B., Qu, M. C. and Zhang, J. N., “Toughness Properties of Basalt/Carbon Fiber Hybrid Composites", Advanced Materials Research, 150, 732–735 (2015), DOI:10.4028/ in Google Scholar

Zhang, J., Chaisombat, K., He, S. and Wang, C. H., “Hybrid Composite Laminates Reinforced with Glass/Carbon Woven Fabrics for Lightweight Load Bearing Structures", Mater. Des., 36, 75–80 (2012), DOI:10.1016/j.matdes.2011.11.00610.1016/j.matdes.2011.11.006Search in Google Scholar

Zhu, J., Li, W., Yang, G., Jia, X. and Yang, X., “Crushing Characteristics of Filament Wound Carbon Fiber/Epoxy Tube under Quasi-Static Compression Condition", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 30, 1225–1228 (2015), DOI:10.1007/s11595-015-1299-y10.1007/s11595-015-1299-ySearch in Google Scholar

Received: 2020-07-08
Accepted: 2020-10-08
Published Online: 2021-05-14
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 30.11.2022 from
Scroll Up Arrow