Accessible Unlicensed Requires Authentication Published by De Gruyter November 16, 2021

Morphology and Tensile Properties as a Function of Welding Current in Thermoplastic Induction Welds

W. P. Ma, H. C. Bu, F. Y. Wang, H. Y. Yang, Y. Xu and X. H. Zhan

Abstract

Compared to other conventional joining methods, induction welding offers the superiority of avoiding mechanical degradation and satisfying the need for weight reduction in the aircraft industry. In this paper, a metal mesh was adapted as an induction component in the induction welding of polyetheretherketone (PEEK) with various currents. The effect of welding current on the microstructure and mechanical properties of the induction welding joint was further investigated. The results indicate that induction welding joints with the narrow thickness of the fusion zone and high tensile strength can be attained in the welding current range of 7.05 A to 11.05 A. However, when the current exceeds 13.91 A, the excessive heat input leads to the unsteady flow of PEEK or even thermal oxidative degradation and thermal decomposition, which increases the thickness of the fusion zone and reduces the tensile strength of the joint. In addition, the principal fracture mode presents cohesive failure, thereby promoting the tensile strength of the joint.


Xiaohong Zhan, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PRC


Acknowledgements

This work was supported by the open subject of the National key laboratory of advanced composites.

References

Boria, S., Scattina, A. and Belingardi, G., “Impact Behavior of a Fully Thermoplastic Composite", Compos. Struct., 167, 63–75 (2017), DOI:10.1016/j.compstruct.2017.01.08310.1016/j.compstruct.2017.01.083Search in Google Scholar

Banik, N., “A Review on the Use of Thermoplastic Composites and their Effects in Induction Welding Method", Mater. Today Proc., 5, 20239–20249 (2018), DOI:10.1016/j.matpr.2018.06.39510.1016/j.matpr.2018.06.395Search in Google Scholar

Coban, O., Akman, E., Bora, M. O., Oztoprak, B. G. and Demir, A., “Laser Surface Treatment of CFRP Composites for a Better Adhesive Bonding Owing to the Mechanical Interlocking Mechanism", Polym. Compos., 40, 3611–3622 (2019), DOI:10.1002/pc.2522410.1002/pc.25224Search in Google Scholar

Chen, S. Q., Zhang, D., “Corrosion Behavior of Q235 Carbon Steel in Air-saturated Seawater Containing Thalassospira Sp", Corros. Sci., 148, 71–82 (2019), DOI:10.1016/j.corsci.2018.11.03110.1016/j.corsci.2018.11.031Search in Google Scholar

Dzul-Cervantes, M. A. A., Pacheco-Salazar, O. F., Can-Herrera, L. A., Moreno-Chulim, M. V., Cauich-Cupul, J., I., Herrera-Franco, P. J. and Valadez-Gonzalez, A., “Effect of Moisture Content and Carbon Fiber Surface Treatments on the Interfacial Shear Strength of a Thermoplastic-Modified Epoxy Resin Composites", J. Mater. Res. Technol., 9, 15739–15749 (2020), DOI:10.1016/j.jmrt.2020.11.02710.1016/j.jmrt.2020.11.027Search in Google Scholar

Dughiero, F., Forzan, M., Garbin, M., Pozza, C. and Sieni, E., “A 3D Numerical FEM Model for the Simulation of Induction Welding of Tubes", COMPEL The International Journal for. Computation and Mathematics in Electrical and Electronical Engineering, 30, 1570–1581 (2011), DOI:10.1108/0332164111115272010.1108/03321641111152720Search in Google Scholar

Flanagan, M., Doyle, A., Doyle, K., Ward, M., Bizeul, M., Canavan, R., Weafer, B., Bradaigh, C. M. O., Harrison, N. M. and Goggins, J., “Comparative Manufacture and Testing of Induction-welded and Adhesively Bonded Carbon Fibre PEEK Stiffened Panels", J. Thermoplast Compos. Mater., 32, 1622–1649 (2019), DOI:10.1177/089270571879236210.1177/0892705718792362Search in Google Scholar

Farahani, R. D., Janier, M. and Dube, M., “Conductive Films of Silver Nanoparticles as Novel Susceptors for Induction Welding of Thermoplastic Composites", Nanotechnology, 29, 125701 (2018), DOI:10.1088/1361-6528/aaa93c10.1088/1361-6528/aaa93cSearch in Google Scholar

Grunewald, J., Parlevliet, P. and Altstadt, V., “Manufacturing of Thermoplastic Composite Sandwich Structures", J. Thermoplast. Compos. Mater., 30, 437–464 (2017), DOI:10.1177/089270571560468110.1177/0892705715604681Search in Google Scholar

Lionetto, F., Pappada, S., Buccoliero, G. and Maffezzoli, A., “Finite Element Modeling of Continuous Induction Welding of Thermoplastic Matrix Composites", Mater. Des., 120, 212–221 (2017), DOI:10.1016/j.matdes.2017.02.02410.1016/j.matdes.2017.02.024Search in Google Scholar

Lambiase, F. and Genna, S., “Experimental Analysis of Laser Assisted Joining of Al-Mg Aluminium Alloy with Polyetheretherketone(PEEK)", Int. J. Adhes. Adhes., 84, 265–274 (2018), DOI:10.1016/j.ijadhadh.2018.04.00410.1016/j.ijadhadh.2018.04.004Search in Google Scholar

Liu, X., Wang, X. J., Wang, B. S., Zhang, L. L., Yang, C. and Chai, T. X., “The Role of Mechanical Connection during Friction Stir Keyholeless Spot Welding Joints of Dissimilar Materials", Metals, 7, 217 (2017), DOI:10.3390/met706021710.3390/met7060217Search in Google Scholar

Li, Y., Bu, H. C., Yang, H. Y., Liu, G., Yao, J. N. and Zhan. X. H., “Effect of Laser Heat Input on the Interface Morphology during Laser Joining of CFRTP and 6061 Aluminum Alloy", J. Manuf. Process., 50, 366–379 (2020), DOI:10.1016/j.jmapro.2019.12.02310.1016/j.jmapro.2019.12.023Search in Google Scholar

Muddassir, M., Duhovic, M. and Gurka, M., “A Comprehensive Study of Metal-Coated Short Carbon Fibers, Graphite Particles, and Hybrid Fillers for Induction Heating", J. Thermoplast. Compos. Mater., 33, 393–412 (2020), DOI:10.1177/089270571880634410.1177/0892705718806344Search in Google Scholar

O’Shaughnessey, P. G., Dube, M. and Villegas, I. F., “Modeling and Experimental Investigation of Induction Welding of Thermoplastic Composites and Comparison with other Welding Processes", J. Compos. Mater., 50, 2895–2910 (2016), DOI:10.1177/002199831561499110.1177/0021998315614991Search in Google Scholar

Palmieri, F. L., Belcher, M. A., Wohl, C. J., Blohowiak, K. Y. and Connell, J. W., “Laser Ablation Surface Preparation for Adhesive Bonding of Carbon Fiber Reinforced Epoxy Composites", Int. J. Adhes. Adhes., 68, 95–101 (2016), DOI:10.1016/j.ijadhadh.2016.02.00710.1016/j.ijadhadh.2016.02.007Search in Google Scholar

Rodriguez, V., Sukumaran, J., Schlarb, A. K. and De Baets, P., “Influence of Solid Lubricants on Tribological Properties of Polyetheretherketone (PEEK)", Tribol. Int., 103, 45–57 (2016), DOI:10.1016/j.triboint.2016.06.03710.1016/j.triboint.2016.06.037Search in Google Scholar

Stepashkin, A. A., Chukov, D. I., Senatov, F. S., Salimon, A. I., Korsunsky, A. M. and Kaloshkin, S. D., “3D-Printed PEEK-carbon fiber (CF) Composites: Structure and Thermal Properties", Compos. Sci. Technol., 164, 319–326 (2018), DOI:10.1016/j.compscitech.2018.05.03210.1016/j.compscitech.2018.05.032Search in Google Scholar

Stokes, V. K., “Experiments on the Induction Welding of Thermoplastics", Polym. Eng. Sci., 43, 1523–1541 (2003), DOI:10.1002/pen.1012910.1002/pen.10129Search in Google Scholar

Torstrick, F. B., Lin, A. S. P., Safranski, D. L., Potter, D., Sulchek, T., Lee, C. S. D., Gall, K. and Guldberg, R. E., “Effects of Surface Topography and Chemistry on Polyether-Ether-Ketone(PEEK) and Titanium Osseointegration", Spine (Phila Pa 1976), 45, E417– E424 (2020), DOI:10.1097/BRS. 000000000000330310.1097/BRS.0000000000003303Search in Google Scholar

Villegas, I. F., Moser, L., Yousefpour, A., Mitschang, P. and Bersee, H. E. N., “Process and Performance Evaluation of Ultrasonic, Induction and Resistance Welding of Advanced Thermoplastic Composites", J. Thermoplastic Compos. Mater., 26, 1007–1024 (2013), DOI:10.1177/089270571245603110.1177/0892705712456031Search in Google Scholar

Woo, S. P., Kim, S. H., Yoon, S. J. and Choi, W., “Effect of Bolt-Hole Clearance on Bolted Connection Behavior for Pultruded Fiber-Reinforced Polymer Structural Plastic Members", Int. J. Polym. Sci., 2017, 1–12 (2017), DOI:10.1155/2017/874540510.1155/2017/8745405Search in Google Scholar

Zhao, T., Rans, C., Villegas, I. F. and Benedictus, R., “On Sequential Ultrasonic Spot Welding as an Alternative to Mechanical Fastening in Thermoplastic Composite Assemblies: A Study on Single-column Multi-row Single-Lap Shear Joints", Composites Part A, 120, 1–11 (2019), DOI:10.1016/j.compositesa.2019.02.01310.1016/j.compositesa.2019.02.013Search in Google Scholar

Zhan, X. H., Li, Y., Gao, C. Y., Wang, H. G. and Yang Y., “Effect of Infrared Laser Surface Treatment on the Microstructure and Properties of Adhesively CFRP Bonded Joints", Opt. Laser. Technol., 106, 398–409 (2018), DOI:10.1016/j.optlastec.2018.04.02310.1016/j.optlastec.2018.04.023Search in Google Scholar

Received: 2020-08-10
Accepted: 2021-03-19
Published Online: 2021-11-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany