Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 15, 2021

Basic Study of Extensional Flow Mixing for the Dispersion of Carbon Nanotubes in Polypropylene by Using Capillary Extrusion

  • K. Matsumoto and T. Tanaka


This study evaluated the mixing effect of simple uniaxial extensional flow for the dispersion of multiwalled carbon nanotubes (MWCNTs) into polypropylene (PP) as a nonpolar matrix. An only converging flow allowed for a high strain rate and was suitable for the compounding process. The extensional flow was characterized from the entrance pressure drop (ΔP0) at the converging section. Thus, in this study, capillary extrusion was employed to generate uniaxial extensional flow. Based on the hypothesis that the dispersion of nanofillers depends on the magnitude of flow-induced stress, ΔP0, which related to extensional stress, was measured directly during capillary extrusion by using an orifice die. The influences of the mass flow rate and the hole diameter in the orifice die, which affected ΔP0, on the extrusion of PP nanocomposites with an MWCNT loading of 1.0 wt.% were studied. The extruded samples were collected, and the dispersion state was evaluated based on the melt viscoelastic properties, volume resistivity, and morphological observations by optical microscopy (OM) and transmission electron microscopy (TEM). The agglomeration area of the MWCNTs decreased with higher ΔP0 (higher mass flow rate and smaller hole diameter), which increased the uniformity of the dispersion. Moreover, the influence of the length-to-diameter (L/D) ratio of the hole in the capillary die on the dispersion state of the MWCNTs was investigated. A higher L/D ratio of the capillary die did not improve the dispersion state, although shear and extensional stresses were provided.


This work was financially supported by a (advanced technological) research project in the Research and Development Center for Advanced Composite Materials of Doshisha University and the MEXT (the Ministry of Education, Culture, Sports, Science and Technology, Japan)-Supported Program for the Strategic Research Foundation at Private Universities, 20132017, project S1311036.


Alig, I., Pötschke, P., Lellinger, D., Skipa, T., Pegel, S., Kasaliwal, G. R. and Villmow, T., "Establishment, Morphology and Properties of Carbon Nanotube Networks in Polymer Melts", Polymer, 53, 4–28 (2012), DOI:10.1016/j.polymer.2011.10.06310.1016/j.polymer.2011.10.063Search in Google Scholar

Arao, Y., Otoshi, T. and Tanaka, T., "Study on the Exfoliation of Nanoclay Using High Speed Flow in Narrow Tube", Trans. Jpn. Soc. Mech. Eng. A, 79, 1239–1251 (2013), DOI:10.1299/kikaia.79.123910.1299/kikaia.79.1239Search in Google Scholar

Ariffin, A., Ariff, Z. M., Jikan, S. S. "Evaluation on Extrudate Swell and Melt Fracture of Polypropylene/Kaolin Composites at High Shear Stress", J. Reinf. Plast. Comp., 30, 609–619 (2011), DOI:10.1177/073168441139914010.1177/0731684411399140Search in Google Scholar

Bangarusampath, D. S., Ruckdäschel, H., Altstädt, V., Sandler, J. K. W., Garray, D. and Shaffer, M. S. P., "Rheological and Electrical Percolation in Melt-Processed Poly(ether ether ketone)/Multi-Wall Carbon Nanotube Composites", Chem. Phys. Lett., 482, 105–109 (2009), DOI:10.1016/j.cplett.2009.09.06410.1016/j.cplett.2009.09.064Search in Google Scholar

Battisti, M., Perko, L., Arunachalam, S., Stieger, S. and Friesenbichler, W., "Influence of Elongational Flow Generating Nozzles on Material Properties of Polypropylene Nanocomposites", Polym. Eng. Sci., 58, 3–12 (2018), DOI:10.1002/pen.2436110.1002/pen.24361Search in Google Scholar

Besco, S., Modesti, M. and Lorenzetti, A., "Influence of Processing Parameters on the Structure of Melt Blended Polyethylene/Organoclay Nanocomposites Produced by a Masterbatch Route", Polym. Eng. Sci., 53, 689–698 (2013), DOI:10.1002/pen.2331010.1002/pen.23310Search in Google Scholar

Carson, S. O., "Extensional Flows in Polymer Processing: Effects on Mixing and Material Performance", Electronic Thesis or Dissertation, Case Western Reserve University, Cleveland (2016)Search in Google Scholar

Cogswell, F. N., "Converging Flow and Stretching Flow: A Compilation", J. Non-Newtonian Fluid. Mech., 4, 23–38 (1978), DOI:10.1016/0377-0257(78)85004-610.1016/0377-0257(78)85004-6Search in Google Scholar

Coleman, J. N., Khan, U., Blau, W. J., and Gun’ko, Y. K., "Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites", Carbon, 44, 1624–1652 (2006), DOI:10.1016/j.carbon.2006.02.03810.1016/j.carbon.2006.02.038Search in Google Scholar

Combeaud, C., Vergnes, B., Merten, A., Hertel, D., Münstedt, H., "Volume Defects during Extrusion of Polystyrene Investigated by Flow Induced Birefringence and Laser-Doppler Velocimetry", J. Non-Newtonian Fluid. Mech., 145, 69–77 (2007), DOI:10.1016/j.jnnfm.2007.01.00210.1016/j.jnnfm.2007.01.002Search in Google Scholar

Dintcheva, N. T., Mantia F. P. L., "Capter 18 The Role of Elongational Flow in Morphology Modification of Polyethylene/OMMt Nanocomposite System", in Advances in Diverse Industrial Applications of Nanocomposites, Boreddy Reddy (Ed.), IntechOpen, p. 429–440 (2011), DOI:10.5772/1543110.5772/15431Search in Google Scholar

Ibarra-Gómez, R., Muller, R., Bouquey, M., Rondin, J., Serra, C. A., Hassouna, F., Mouedden, Y. E., Toniazzo, V. and Ruch, D., "Processing of Nanocomposites PLA/Graphite Using a Novel Elongational Mixing Device", Polym. Eng. Sci., 55, 214–222 (2015), DOI:10.1002/pen.2386910.1002/pen.23869Search in Google Scholar

Kharchenko, S. B., Douglas, J. F., Obrzut, J., Grulke, E. A. and Migler K. B., "Flow-Induced Properties of Nanotube-Filled Polymer Materials", Nat. Mater., 3, 564–568 (2004), DOI:10.1038/nmat118310.1038/nmat1183Search in Google Scholar PubMed

Krause, B., Boldt, R. and Pötschke, P., "A Method for Determination of Length Distributions of Multiwalled Carbon Nanotubes before and after Melt Processing", Carbon, 49, 1243–1247 (2011), DOI:10.1016/j.carbon.2010.11.04210.1016/j.carbon.2010.11.042Search in Google Scholar

Krause, B., Pötschke, P., Ilin, E. and Predtechenskiy, M., "Melt Mixed SWCNT-Polypropylene Composites with Very Low Electrical Percolation", Polymer, 98, 45–50 (2016), DOI:10.1016/j.polymer.2016.06.00410.1016/j.polymer.2016.06.004Search in Google Scholar

Krause, B., Villmow, T., Boldt, R., Mende, M., Petzold, G. and Pötschke, P., "Influence of Dry Grinding in a Ball Mill on the Length of Multiwalled Carbon Nanotubes and their Dispersion and Percolation Behaviour in Melt Mixed Polycarbonate Composites", Compos. Sci. Technol., 71, 1145–1153 (2011), 10.1016/j.compscitech.2011.04.004Search in Google Scholar

Li, J., Ton-That, M. T., Leelapornpisit, W. and Utracki, L. A., "Melt Compounding of Polypropylene-Based Clay Nanocomposites", Polym. Eng. Sci., 47, 1447–1458 (2007), DOI:10.1002/pen.2084110.1002/pen.20841Search in Google Scholar

Liang, J., Chen, C., Zhou, T., Zou, S., Huang, W., Tsui, C., Tang, C. and Misˇkovic´-Stankovic´, V., "Melt Extrudate Swell Behavior of Multi-Walled Carbon Nanotubes Filled-Polypropylene Composites", Polym. Compos., 38, 2433–2439 (2017), DOI:10.1002/pc.2382910.1002/pc.23829Search in Google Scholar

Mackley, M. R., Marshall, R. T. J. and Smeulders, J. B. A. F., "The Multipass Rheometer", J. Rheol., 39, 1293–1309 (1995), DOI:10.1122/1.55063710.1122/1.550637Search in Google Scholar

Manas-Zloczower, I., "Studies of Mixing Efficiency in Batch and Continuous Mixers", Rubber Chem. Technol., 67, 504–528 (1994), DOI:10.5254/1.353868710.5254/1.3538687Search in Google Scholar

Mittal, G., Dhand, V., Rhee, K. Y., Park, S. J. and Lee, W. R., "A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites", J. Ind. Eng. Chem., 21, 11–25 (2015), DOI:10.1016/j.jiec.2014.03.02210.1016/j.jiec.2014.03.022Search in Google Scholar

Müller, K, Bugnicourt, E., Latorre, M., Jorda, M., Sanz, Y. E., Lagaron, J. M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Pérez, G., Jesdinszki, M., Lindner, Scheuerer, Z., Castelló, S. and Schmid, M., "Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and their Applications in the Packaging, Automotive and Solar Energy Fields", Nanomaterials, 7, 74 (2017), DOI:10.3390/nano704007410.3390/nano7040074Search in Google Scholar PubMed PubMed Central

Münstedt, H., "Recoverable Extensional Flow of Polymer Melts and its Relevance for Processing", Polymers 2020, 12, 1512 (2020), DOI:10.3390/polym1207151210.3390/polym12071512Search in Google Scholar PubMed PubMed Central

Novais, R. M., Covas, J. A. and Paiva, M. C., "The Effect of Flow Type and Chemical Functionalization on the Dispersion of Carbon Nanofiber Agglomerates in Polypropylene", Composites, Part A, 43, 833–841 (2012), 10.1016/j.compositesa.2012.01.017Search in Google Scholar

Pötschke, P., Abdel-Goad, M., Alig, I., Dudkin, S. and Lellinger, D., "Rheological and Dielectrical Characterization of Melt Mixed Polycarbonate-Multiwalled Carbon Nanotube Composites", Polymer, 45, 8863–8870 (2004), DOI:10.1016/j.polymer.2004.10.04010.1016/j.polymer.2004.10.040Search in Google Scholar

Prashantha, K., Soulestin, J., Lacrampe, M. F., Claes, M., Dupin, G. and Krawczak, P., "Multi-Walled Carbon Nanotube Filled Polypropylene Nanocomposites Based on Masterbatch Route: Improvement of Dispersion and Mechanical Properties through PP-g-MA Addition", eXPRESS Polym. Lett., 2, 735–745 (2008), DOI:10.3144/expresspolymlett.2008.8710.3144/expresspolymlett.2008.87Search in Google Scholar

Sharma, V., Haward, S. J., Serdy J., Keshavarz, B., Soderlund, A., Threlfall-Holmes, P. and McKinley, G. H., "The Rheology of Aqueous Solutions of Ethyl Hydroxy-Ethyl Cellulose (EHEC) and its Hydrophobically Modified Analogue (hmEHEC): Extensional Flow Response in Capillary Break-Up, Jetting (ROJER) and in A Cross-Slot Extensional Rheometer", Soft Matter, 11, 3251–3270 (2015), DOI:10.1039/γ4sm01661λ10.1039/γ4sm01661λSearch in Google Scholar

Tokihisa, M., Yakemoto, K., Sakai, T., Utracki, L. A., Sepehr, M., Li, J. and Simard, Y., "Extensional Flow Mixer for Polymer Nanocomposites", Polym. Eng. Sci., 46, 1040–1050 (2006), DOI:10.1002/pen.2054210.1002/pen.20542Search in Google Scholar

Utracki, L. A., "Fibers from Polymeric Nanocomposites", Indian J. Fiber Text. Res., 31, 15–28 (2006)Search in Google Scholar

Vilaverde, C., Santos, R. M., Paiva, M. C. and Covas, J. A., "Dispersion and Re-Agglomeration of Graphite Nanoplates in Polypropylene Melts under Controlled Flow Conditions", Composites, Part A, 78, 143–151 (2015), 10.1016/j.compositesa.2015.08.010Search in Google Scholar

Yang, J., Zhang, Y., Wang, Z. and Chen, P., "Influences of High Aspect Ratio Carbon Nanotube Network on Normal Stress Difference Measurements and Extrusion Behaviors for Isotactic Polypropylene Nanocomposite Melts", RSC Adv., 4, 1246–1255 (2014), DOI:10.1039/C3RA44777D10.1039/C3RA44777DSearch in Google Scholar

Yetgin, S. H., "Effect of Multi Walled Carbon Nanotube on Mechanical, Thermal and Rheological Properties of Polypropylene", J. Mater. Res. Technol., 8, 4725–4735 (2019), DOI:10.1016/j.jmrt.2019.08.01810.1016/j.jmrt.2019.08.018Search in Google Scholar

Zatloukal, M., Musil, J., "Analysis of Entrance Pressure Drop Techniques for Extensional Viscosity Determination", Polym. Test., 28, 843–853 (2009), DOI:10.1016/j.polymertesting.2009.07.00710.1016/j.polymertesting.2009.07.007Search in Google Scholar

Received: 2020-08-16
Accepted: 2021-01-15
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 27.2.2024 from
Scroll to top button