Accessible Requires Authentication Published by De Gruyter September 15, 2021

Synergistic Effect between Modified Graphene Oxide and Ammonium Polyphosphate on Combustion Performance, Thermal Stability and Mechanical Properties of Polylactic Acid

X.-Y. Pang, Y.-F. Meng, Y.-P. Xin, R. Chang and J.-Z. Xu

Abstract

To improve the thermal stability, ZF-GO (graphene oxide (GO) modified by zinc ferrite (ZF)) is prepared. In view of the anti-dripping function of ZF-GO and flame retardant effect of ammonium polyphosphate (APP), the influence of ZF-GO, APP, mixture of ZF-GO and APP on combustion performance, thermal stability and mechanical properties of polylactic acid (PLA) is investigated. Results show that the modification of GO by ZF significantly improves the residue of ZFGO by 34.7%. The char-forming capability and unique network structure of ZF-GO prevent the melt dripping of PLA. Although APP can increase the limiting oxygen index of PLA, there is still melt dripping. The combination of ZF-GO and APP improves the residual yield of 94PLA/3ZF-GO/3APP by 4.3 times relative to pure PLA, and the UL-94 level reaches V-0. The two additives show synergistic char-forming effect, and there is both physical carbonization and chemical carbonization. The incorporated fillers can decrease the total heat release (THR) of PLA composites. Specifically, the THR and peak value of heat release rate of 94PLA/3ZF-GO/3APP decrease by 21.2% and 53.9%, respectively. For the PLA/ZF-GO/APP system, plenty of residues and the anti-dripping network structure are key factors to get good flame retardancy. Addition of ZFGO and APP reduces the tensile strength, but the tensile elongation of the modified PLA composites is improved. 94PLA/ 3ZF-GO/3APP shows good integrated performance.

Nomenclature

APP

ammonium polyphosphate

BPE

polyelectrolyte;

DDM

4,4-diaminodiphenyl methane

EDS

energy dispersive spectrum

EG

expanded graphite

FESEM

field emission scanning electron microscope

GIC

graphite intercalation compound

GO

graphene oxide

LOI

limiting oxygen index, %

NG

natural graphite

PEG

polyethylene glycol

PHRR

peak value of heat release rate, W g–1

PLA

polylactic acid

Rmax

the maximum mass loss rate, wt%°C–1

T5

temperature corresponding to a 5% weight loss, °C

Tm

melting point, °C

Tmax

temperature corresponding to the maximum weight loss rate, °C;

TG

thermogravimetric analysis

TG/DTG

thermogravimetric and differential thermogravimetric analysis;

THR

total heat release, kJ g–1

Xγ

crystallinity

XRD

Ω ray diffraction spectrum

ZF

zinc ferrite

ZF-GO

GO modified by ZF

ΔHc

thermal enthalpy of the detected samples, J g–1

Acknowledgements

This study is supported by project (No. B2015201028) of Natural Science Foundation of Hebei Province. We gratefully acknowledge the support.

References

Bourelle, E., Konno, H. and Inagaki, M., "Structural Defects Created on Natural Graphite Surface by Slight Treatment of Oxygen Plasma: STM Observations", Carbon, 37, 2041–2048 (1999), DOI:10.1016/S0008-6223(99)00076-7 Search in Google Scholar

Camino, G., Costa, L., Trossarelli, L., Costanzi, F. and Pagliari, A., "Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part VI-Mechanism of Ester Formation in Ammonium Polyphosphate-Pentaerythritol Mixtures", Polym. Degrad. Stab., 12, 213–228 (1985), DOI:10.1016/0141-3910(84)90027-2 Search in Google Scholar

Chang, R., Pang, X. Y., Li, Z. J. and Xin, Y. P., "Preparation and Characterization of Large Size Graphite Oxide and Graphene", Journal of Hebei University (Natural Science Edition), 40, 260–268 (2020), 1565.2020.03.006, DOI:10.3969/j.issn.1000 Search in Google Scholar

Chen, S. S., Ai, L. H., Zeng, J. M. and Liu, P., "Synergistic Flame-Retardant Effect of an Aryl Boronic Acid Compound and Ammonium Polyphosphate on Epoxy Resins", Chemistry Select, 4, 9677–9682 (2019), DOI:10.1002/slct.201902795 Search in Google Scholar

Chen, Y. Y., Geever, L. M., Killion, J. A., Lyons, J. G, Higginbotham, C. L. and Devine, D. M., "Halloysite Nanotube Reinforced Polylactic Acid Composite", Polym. Compos., 38, 2166–2173(2017), DOI:10.1002/pc.23794 Search in Google Scholar

Decsov, K., Bocz, K., Szolnoki, B., Bourbigot, S., Fontaine, G., Vadas, D. and Marosi, G., "Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid", Molecules, 24, 4123 (2019), DOI:10.3390/molecules24224123 Search in Google Scholar

Elhamnia, M., Motlagh, G. H. and Goudarzi, R., "The Grafting of PEG-MA Chains on Graphene Derivatives to Improve Tensile Properties of Polyethylene", Int. Polym. Proc., 32, 623–636 (2017), DOI:10.3139/217.3508 Search in Google Scholar

Fan, B. B., Guo, H. H., Shi, J., Shi, C. Y., Jia, Y., Wang, H. L., Chen, D. L., Yang, Y. J., Lu, H. X. and Xu, H. L., "Facile One-Pot Preparation of Silver/Reduced Graphene Oxide Nanocomposite for Cancer Photodynamic and Photothermal Therapy", J. Nanosci. Nanotechnol., 16, 7049–7054 (2016), DOI:10.1166/jnn.2016.11327 Search in Google Scholar

Fischer, E. W., Sterzel, H. J. and Wegner, G., "Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions", Kolloid Z. Z. Polym., 251, 980–990 (1973), DOI:10.1007/BF01498927 Search in Google Scholar

Fukushima, K., Murariu, M. and Camino, G., "Effect of Expanded Graphite/Layered-Silicate Clay on Thermal, Mechanical and Fire Retardant Properties of Poly(lactic acid)", Polym. Degrad. Stab., 95, 1063–1076 (2010), DOI:10.1016/j.polymdegradstab.2010.02.029 Search in Google Scholar

Gao, W., Yu, Y., Chen, T. T., Zhang, Q. W., Chen, Z. W., Chen, Z. Q. and Jiang, J. C., "Enhanced Flame Retardancy of Unsaturated Polyester Resin Composites Containing Ammonium Polypho Search in Google Scholar

sphate and Metal Oxides", J. Appl. Polym. Sci., 137 (2020), DOI:10.1002/app.49148 Search in Google Scholar

Guan, Y. H., Huang, J. Q. and Yang, J. C., "An Effective Way to Flame-Retard Biocomposite with Ethanolamine Modified Ammonium Polyphosphate and its Flame Retardant Mechanisms", Ind. Eng. Chem. Res., 54, 3524–3531 (2015), DOI:10.1021/acs.iecr.5b00123 Search in Google Scholar

Gulnura, N., Kenes, K., Yerdos, O., Zulkhair, M. and Di Capua, R., "Preparation of Expanded Graphite Using a Thermal Method", IOP Conference Series: Materials Science and Engineering, 323, 012012 (2018), DOI:10.1088/1757-899X/323/1/012012 Search in Google Scholar

Han, Y. Q., Wu, Y., Shen, M. X., Huang, X. L., Zhu, J. J. and Zhang, X. G., "Preparation and Properties of Polystyrene Nanocomposites with Graphite Oxide and Graphene as Flame Retardants", J. Mater. Sci., 48, 4214–4222 (2013), DOI:10.1007/s10853-013-7234-8 Search in Google Scholar

Harris, A. M., Lee, E. C., "Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity", J. Appl. Polym. Sci., 107, 2246–2255 (2010), DOI:10.1002/app.27261 Search in Google Scholar

Hassan, A., Hau, L. Y. and Hasan, M., "Effect of Ammonium Polyphosphate on Flame Retardancy, Thermal Stability, and Mechanical Properties of Unsaturated Polyester/Phenolic/Montmorillonite Nanocomposites", Adv. Polym. Technol., 36, 278–283 (2017), DOI:10.1002/adv.21605 Search in Google Scholar

Hou, Y., Li, X. R. and Zhao, Q. D., "ZnFe2O4 Multi-Porous Microbricks/Graphene Hybrid Photocatalyst: Facile Synthesis, Improved Activity and Photocatalytic Mechanism", Appl. Catal. B, 142–143, 80–88 (2013), DOI:10.1016/j.apcatb.2013.04.062 Search in Google Scholar

Jannatin, M., Supriyanto, G., Abdulloh, Ibrahim, W. A. W. and Rukman, N. K., "Graphene Oxide from Bagasse/Magnetite Composite: Preparation and Characterization", IOP Conference Series: Earth and Environmental Science, 217, 1–7 (2019), DOI:10.1088/1755-1315/217/1/012007 Search in Google Scholar

Jia, L., Tong, B., Li, D. H., Zhang, W. C. and Yang, R. J., "Crystallization and Flame-Retardant Properties of Polylactic Acid Composites with Polyhedral Octaphenylsilsesquioxane", Polym. Adv. Technol., 30, 648–665 (2019), DOI:10.1002/pat.4501 Search in Google Scholar

Jing, J., Zhang, Y., Fang, Z. P. and Wang, D. Y., "Core-Shell Flame Retardant/Graphene Oxide Hybrid: A Self-Assembly Strategy towards Reducing Fire Hazard and Improving Toughness of Polylactic Acid", Compos. Sci. Technol., 165, 161–167 (2018), 10.1016/j.compscitech.2018.06.024 Search in Google Scholar

Jing, J., Zhang, Y., Tang, X. L., Li, X. N., Peng, M. and Fang, Z. P., "Combination of Abio-Based Polyphosphonate and Modified Graphene Oxide toward Superior Flame Retardant Polylactic Acid", RSC Adv., 8, 4304–4313 (2018), DOI:10.1039/C7RA12224A Search in Google Scholar

Koji, M., Yuki, U. and Kazuma, G., "Surface Modification Effects on the Tensile Properties of Functionalised Graphene Oxide Epoxy Films", RSC Adv., 8, 9677–9684 (2018), DOI:10.1039/C8RA00252E Search in Google Scholar

Li, L. S., Chen, Y. J., Wu, X. D., Xu, B. and Qian, L. J., "Bi-Phase Flame-Retardant Effect of Dimethyl Methylphosphonate and Modified Ammonium Polyphosphate on Rigid Polyurethane Foam", Polym. Adv. Technol., 30, 2721–2728 (2019), DOI:10.1002/pat.4702 Search in Google Scholar

Liu, J. N., Pang, X. Y., Shi, X. Z. and Xu, J. Z., "Expandable Graphite in Polyethylene: The Effect of Modification, Particle Size and the Synergistic Effect with Ammonium Polyphosphate on Flame Retardancy, Thermal Stability and Mechanical Properties", Combust. Sci. Technol., 192, 575–591 (2020), DOI:10.1080/00102202.2019.1584797 Search in Google Scholar

Liu, Y., Wang, D. Y., Wang, J. S., Song, Y. P. and Wang, Y. Z., "A Novel Intumescent Flame-Retardant LDPE System and its Thermo-Oxidative Degradation and Flame-Retardant Mechanisms", Polym. Adv. Technol., 19, 1566–1575 (2008), DOI:10.1002/pat.1171 Search in Google Scholar

Ma, L., Wang, G. J. and Dai, J. F., "Preparation of Functional Reduced Graphene Oxide and its Influence on the Properties of Polyimide Composites", J. Appl. Polym. Sci., 134 (2017), DOI:10.1002/app.45119 Search in Google Scholar

Nampoothiri, K. M., Nair, N. R. and John, R. P., "An Overview of the Recent Developments in Polylactide (PLA) Research", Bioresour. Technol., 101, 8493–8501 (2010), DOI:10.1016/j.biortech.2010.05.092 Search in Google Scholar

Navidpour, A. H., Salehi, M., Salimijazi, H. R., Kalantari, Y. and Azarpoursiahkali, M., "Photocatalytic Activity of Flame-Sprayed Coating of Zinc Ferrite Powder", J. Therm. Spray Technol., 26, 2030–2039 (2017), DOI:10.1007/s11666-017-0648-0 Search in Google Scholar

Pang, X. Y., Chang, R. and Weng, M. Q., "Halogen-Free Flame Retarded Rigid Polyurethane Foam: The Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Flame Retardancy and Thermal Stability", Polym. Eng. Sci., 58, 2008–2018 (2018), DOI:10.1002/pen.24811 Search in Google Scholar

Pang, X. Y., Tian, Y. and Shi, X. Z., "Synergism between Hydrotalcite and Silicate-Modified Expandable Graphite on Ethylene Vinyl Acetate Copolymer Combustion Behavior", J. Appl. Polym. Sci., (2017), DOI:10.1002/app.44634 Search in Google Scholar

Polat, O., Kaynak, C., "Effects of Zinc Borate on the Flame Retardancy Performance of Aluminum Diethylphosphinate in Polyamide-6 and its Composites", Int. Polym. Proc., 34, 59–71 (2019), DOI:10.3139/217.35793 Search in Google Scholar

Ribeiro, S. P. S., Martins, R. C., Estevão, L. R. M., Nascimento, M. A. C. and Nascimento, R. S. V., "Microscopy as a Tool to Investigate the Influence of Ammonium Polyphosphate Particle Size on the Flame Retardant Properties of Polymer Composites", Microsc. Res. Tech., 83, 276–286 (2020), DOI:10.1002/jemt.23411 Search in Google Scholar

Shen, M. Y., Chen, W. J., Tsai, K. C., Kuan, C. F., Kuan, H. C., Chou, H. W. and Chiang, C. L., "Preparation of Expandable Graphite and its Flame Retardant Properties in HDPE Composites", Polym. Compos., 38, 2378–2386 (2017), DOI:10.1002/pc.23820 Search in Google Scholar

Sun, Z., Fu, Q. G., Li, H. J. and Li, K. Z., "Preparation and Electrochemical Capacitive Behavior of Graphene by Microwave Assisted Thermal Reduction of Graphite Oxide in Hydrazine Hydrate", Nano Brief Reports & Reviews, 9, 1450066 (2014), DOI:10.1142/S1793292014500660 Search in Google Scholar

Suparanon, T., Phusunti, N. and Phetwarotai, W., "Properties and Characteristics of Polylactide Blends: Synergistic Combination of Poly(butylene succinate) and Flame Retardant", Polym. Adv. Technol., 29, 785–794 (2018), DOI:10.1002/pat.4184 Search in Google Scholar

Tian, S. Y., Chen, Y. F., Hu, Y. J., Wang, Y. F. and Ye, L. G., "Decomposition Mechanism of Atmospheric Carbon Thermal Reduction of Zinc Ferrite and its Kinetics", China Nonferrous Metallurgy, 4, 64–69 (2018), DOI:10.19612/j.cnki.cn11-5066/tf.2018.04.018 Search in Google Scholar

Xie, L. Q., "Study on Decomposition of Zinc Ferrite and Comprehensive Utilization of Iron Resources", Master Thesis, Kunming University of Science and Technology, Kunming, PRC (2011) Search in Google Scholar

Yang, B. J., Li, H., Wang, B. N., Chen, X. and Li, J. F., "Study of Flame Retardant Property of Flexible PVC Added with Nano Zinc Ferrite", Hefei Gongye Daxue Xuebao, Ziran Kexueban, 34, 145–148 (2011), DOI:10.3969/j.issn.1003-5060.2011.01.034 Search in Google Scholar

Yang, C. Z., Li, Z. W., Yu, L. G., Li, X. H. and Zhang, Z. J. "Mesoporous Zinc Ferrite Microsphere-Decorated Graphene Oxide as a Flame Retardant Additive: Preparation, Characterization, and Flame Retardance Evaluation", Ind. Eng. Chem. Res., 56, 7720–7729 (2017), DOI:10.1021/acs.iecr.7b01294 Search in Google Scholar

Ye, L., Meng, X. Y., Ji, X., Li, Z. M. and Tang, J. H., "Synthesis and Characterization of Expandable Graphite–Poly(methylmethacrylate) Composite Particles and their Application to Flame Retardation of Rigid Polyurethane Foams", Polym. Degrad. Stab., 94, 971–979 (2009), DOI:10.1016/j.polymdegradstab.2009.03.016 Search in Google Scholar

Yu, B., Wang, X., Qian, X., Xing, W., Yang, H. and Ma, L., "Functionalized Graphene Oxide/Phosphoramide Oligomer Hybrids Flame Retardant Prepared via in situ Polymerization for Improving the Fire Safety of Polypropylene", RSC Adv., 4, 31782–31794 (2014), DOI:10.1039/C3RA45945D Search in Google Scholar

Zhang, Q. R., Li, Z. W., Li, X. H., Yu, L. G., Zhang, Z. J. and Wu, Z. S., "Zinc Ferrite Nanoparticle Decorated Boron Nitride Nanoplate: Preparation, Magnetic Field Arrangement, and Flame Retardancy", Chem. Eng. J., 356, 680–692 (2019), DOI:10.1016/j.cej.2018.09.053 Search in Google Scholar

Zhang, S., Guo, J., Sun ,Y. Y., Lv, Z. X., Jin, X. D., Liu, X. D., Gu, X. Y., Li, H. F. and Sun, J., "Enhancing the Flame Retardancy of Polyamide 6 by Guanidine Sulfamate-Modified Carbon Nanoparticles: Carbon Nanotubes versus Graphite Oxide", Polym. Compos., 40, E1884-E1892 (2019), DOI:10.1002/pc.25186 Search in Google Scholar

Zhang, S., Lu, C., Gao, X. P., Huang, X. H., Cao, C. L. and Yao, D. H., "Synergistic Flame-Retarded Effect between Carbon Nanotubes and Ammonium Polyphosphate in Nylon6 and Nylon6/Polystyrene Blends", Fire Mater., 43, 401–412 (2019), DOI:10.1002/fam.2712 Search in Google Scholar

Zhao, B., Liu, P. W., Liu, D. Y., Kolibaba, T. J., Zhang, C. Y., Liu, Y. T. and Liu, Y. Q., "Functionalized Graphene Oxide Based on Hydrogen-Bonding Interaction in Water: Preparation and Flame-Retardation on Epoxy Resin", Macromol. Mater. Eng., 304, 1900164 (2019), DOI:10.1002/mame.201900164 Search in Google Scholar

Zhou, Y., Hao, J. W., Liu, G. S. and Du, J. X., "Influencing Mechanism of Transition Metal Oxide on Thermal Decomposition of Ammonium Polyphosphate", Chinese J. Inorg. Chem., 29, 1115–1122 (2013), DOI:10.3969/j.issn.1001-4861.2013.00.193 Search in Google Scholar

Received: 2020-08-19
Accepted: 2021-01-13
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany