Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 15, 2021

Synergistic Effect between Modified Graphene Oxide and Ammonium Polyphosphate on Combustion Performance, Thermal Stability and Mechanical Properties of Polylactic Acid

  • X.-Y. Pang , Y.-F. Meng , Y.-P. Xin , R. Chang and J.-Z. Xu


To improve the thermal stability, ZF-GO (graphene oxide (GO) modified by zinc ferrite (ZF)) is prepared. In view of the anti-dripping function of ZF-GO and flame retardant effect of ammonium polyphosphate (APP), the influence of ZF-GO, APP, mixture of ZF-GO and APP on combustion performance, thermal stability and mechanical properties of polylactic acid (PLA) is investigated. Results show that the modification of GO by ZF significantly improves the residue of ZFGO by 34.7%. The char-forming capability and unique network structure of ZF-GO prevent the melt dripping of PLA. Although APP can increase the limiting oxygen index of PLA, there is still melt dripping. The combination of ZF-GO and APP improves the residual yield of 94PLA/3ZF-GO/3APP by 4.3 times relative to pure PLA, and the UL-94 level reaches V-0. The two additives show synergistic char-forming effect, and there is both physical carbonization and chemical carbonization. The incorporated fillers can decrease the total heat release (THR) of PLA composites. Specifically, the THR and peak value of heat release rate of 94PLA/3ZF-GO/3APP decrease by 21.2% and 53.9%, respectively. For the PLA/ZF-GO/APP system, plenty of residues and the anti-dripping network structure are key factors to get good flame retardancy. Addition of ZFGO and APP reduces the tensile strength, but the tensile elongation of the modified PLA composites is improved. 94PLA/ 3ZF-GO/3APP shows good integrated performance.



ammonium polyphosphate




4,4-diaminodiphenyl methane


energy dispersive spectrum


expanded graphite


field emission scanning electron microscope


graphite intercalation compound


graphene oxide


limiting oxygen index, %


natural graphite


polyethylene glycol


peak value of heat release rate, W g–1


polylactic acid


the maximum mass loss rate, wt%°C–1


temperature corresponding to a 5% weight loss, °C


melting point, °C


temperature corresponding to the maximum weight loss rate, °C;


thermogravimetric analysis


thermogravimetric and differential thermogravimetric analysis;


total heat release, kJ g–1




Ω ray diffraction spectrum


zinc ferrite


GO modified by ZF


thermal enthalpy of the detected samples, J g–1


This study is supported by project (No. B2015201028) of Natural Science Foundation of Hebei Province. We gratefully acknowledge the support.


Bourelle, E., Konno, H. and Inagaki, M., "Structural Defects Created on Natural Graphite Surface by Slight Treatment of Oxygen Plasma: STM Observations", Carbon, 37, 2041–2048 (1999), DOI:10.1016/S0008-6223(99)00076-710.1016/S0008-6223(99)00076-7Search in Google Scholar

Camino, G., Costa, L., Trossarelli, L., Costanzi, F. and Pagliari, A., "Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part VI-Mechanism of Ester Formation in Ammonium Polyphosphate-Pentaerythritol Mixtures", Polym. Degrad. Stab., 12, 213–228 (1985), DOI:10.1016/0141-3910(84)90027-210.1016/0141-3910(84)90027-2Search in Google Scholar

Chang, R., Pang, X. Y., Li, Z. J. and Xin, Y. P., "Preparation and Characterization of Large Size Graphite Oxide and Graphene", Journal of Hebei University (Natural Science Edition), 40, 260–268 (2020), 1565.2020.03.006, DOI:10.3969/j.issn.100010.3969/j.issn.1000Search in Google Scholar

Chen, S. S., Ai, L. H., Zeng, J. M. and Liu, P., "Synergistic Flame-Retardant Effect of an Aryl Boronic Acid Compound and Ammonium Polyphosphate on Epoxy Resins", Chemistry Select, 4, 9677–9682 (2019), DOI:10.1002/slct.20190279510.1002/slct.201902795Search in Google Scholar

Chen, Y. Y., Geever, L. M., Killion, J. A., Lyons, J. G, Higginbotham, C. L. and Devine, D. M., "Halloysite Nanotube Reinforced Polylactic Acid Composite", Polym. Compos., 38, 2166–2173(2017), DOI:10.1002/pc.2379410.1002/pc.23794Search in Google Scholar

Decsov, K., Bocz, K., Szolnoki, B., Bourbigot, S., Fontaine, G., Vadas, D. and Marosi, G., "Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid", Molecules, 24, 4123 (2019), DOI:10.3390/molecules2422412310.3390/molecules24224123Search in Google Scholar PubMed PubMed Central

Elhamnia, M., Motlagh, G. H. and Goudarzi, R., "The Grafting of PEG-MA Chains on Graphene Derivatives to Improve Tensile Properties of Polyethylene", Int. Polym. Proc., 32, 623–636 (2017), DOI:10.3139/217.350810.3139/217.3508Search in Google Scholar

Fan, B. B., Guo, H. H., Shi, J., Shi, C. Y., Jia, Y., Wang, H. L., Chen, D. L., Yang, Y. J., Lu, H. X. and Xu, H. L., "Facile One-Pot Preparation of Silver/Reduced Graphene Oxide Nanocomposite for Cancer Photodynamic and Photothermal Therapy", J. Nanosci. Nanotechnol., 16, 7049–7054 (2016), DOI:10.1166/jnn.2016.1132710.1166/jnn.2016.11327Search in Google Scholar

Fischer, E. W., Sterzel, H. J. and Wegner, G., "Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions", Kolloid Z. Z. Polym., 251, 980–990 (1973), DOI:10.1007/BF0149892710.1007/BF01498927Search in Google Scholar

Fukushima, K., Murariu, M. and Camino, G., "Effect of Expanded Graphite/Layered-Silicate Clay on Thermal, Mechanical and Fire Retardant Properties of Poly(lactic acid)", Polym. Degrad. Stab., 95, 1063–1076 (2010), DOI:10.1016/j.polymdegradstab.2010.02.02910.1016/j.polymdegradstab.2010.02.029Search in Google Scholar

Gao, W., Yu, Y., Chen, T. T., Zhang, Q. W., Chen, Z. W., Chen, Z. Q. and Jiang, J. C., "Enhanced Flame Retardancy of Unsaturated Polyester Resin Composites Containing Ammonium PolyphoSearch in Google Scholar

sphate and Metal Oxides", J. Appl. Polym. Sci., 137 (2020), DOI:10.1002/app.4914810.1002/app.49148Search in Google Scholar

Guan, Y. H., Huang, J. Q. and Yang, J. C., "An Effective Way to Flame-Retard Biocomposite with Ethanolamine Modified Ammonium Polyphosphate and its Flame Retardant Mechanisms", Ind. Eng. Chem. Res., 54, 3524–3531 (2015), DOI:10.1021/acs.iecr.5b0012310.1021/acs.iecr.5b00123Search in Google Scholar

Gulnura, N., Kenes, K., Yerdos, O., Zulkhair, M. and Di Capua, R., "Preparation of Expanded Graphite Using a Thermal Method", IOP Conference Series: Materials Science and Engineering, 323, 012012 (2018), DOI:10.1088/1757-899X/323/1/01201210.1088/1757-899X/323/1/012012Search in Google Scholar

Han, Y. Q., Wu, Y., Shen, M. X., Huang, X. L., Zhu, J. J. and Zhang, X. G., "Preparation and Properties of Polystyrene Nanocomposites with Graphite Oxide and Graphene as Flame Retardants", J. Mater. Sci., 48, 4214–4222 (2013), DOI:10.1007/s10853-013-7234-810.1007/s10853-013-7234-8Search in Google Scholar

Harris, A. M., Lee, E. C., "Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity", J. Appl. Polym. Sci., 107, 2246–2255 (2010), DOI:10.1002/app.2726110.1002/app.27261Search in Google Scholar

Hassan, A., Hau, L. Y. and Hasan, M., "Effect of Ammonium Polyphosphate on Flame Retardancy, Thermal Stability, and Mechanical Properties of Unsaturated Polyester/Phenolic/Montmorillonite Nanocomposites", Adv. Polym. Technol., 36, 278–283 (2017), DOI:10.1002/adv.2160510.1002/adv.21605Search in Google Scholar

Hou, Y., Li, X. R. and Zhao, Q. D., "ZnFe2O4 Multi-Porous Microbricks/Graphene Hybrid Photocatalyst: Facile Synthesis, Improved Activity and Photocatalytic Mechanism", Appl. Catal. B, 142–143, 80–88 (2013), DOI:10.1016/j.apcatb.2013.04.06210.1016/j.apcatb.2013.04.062Search in Google Scholar

Jannatin, M., Supriyanto, G., Abdulloh, Ibrahim, W. A. W. and Rukman, N. K., "Graphene Oxide from Bagasse/Magnetite Composite: Preparation and Characterization", IOP Conference Series: Earth and Environmental Science, 217, 1–7 (2019), DOI:10.1088/1755-1315/217/1/01200710.1088/1755-1315/217/1/012007Search in Google Scholar

Jia, L., Tong, B., Li, D. H., Zhang, W. C. and Yang, R. J., "Crystallization and Flame-Retardant Properties of Polylactic Acid Composites with Polyhedral Octaphenylsilsesquioxane", Polym. Adv. Technol., 30, 648–665 (2019), DOI:10.1002/pat.450110.1002/pat.4501Search in Google Scholar

Jing, J., Zhang, Y., Fang, Z. P. and Wang, D. Y., "Core-Shell Flame Retardant/Graphene Oxide Hybrid: A Self-Assembly Strategy towards Reducing Fire Hazard and Improving Toughness of Polylactic Acid", Compos. Sci. Technol., 165, 161–167 (2018), 10.1016/j.compscitech.2018.06.024Search in Google Scholar

Jing, J., Zhang, Y., Tang, X. L., Li, X. N., Peng, M. and Fang, Z. P., "Combination of Abio-Based Polyphosphonate and Modified Graphene Oxide toward Superior Flame Retardant Polylactic Acid", RSC Adv., 8, 4304–4313 (2018), DOI:10.1039/C7RA12224A10.1039/C7RA12224ASearch in Google Scholar

Koji, M., Yuki, U. and Kazuma, G., "Surface Modification Effects on the Tensile Properties of Functionalised Graphene Oxide Epoxy Films", RSC Adv., 8, 9677–9684 (2018), DOI:10.1039/C8RA00252E10.1039/C°RA00252ESearch in Google Scholar

Li, L. S., Chen, Y. J., Wu, X. D., Xu, B. and Qian, L. J., "Bi-Phase Flame-Retardant Effect of Dimethyl Methylphosphonate and Modified Ammonium Polyphosphate on Rigid Polyurethane Foam", Polym. Adv. Technol., 30, 2721–2728 (2019), DOI:10.1002/pat.470210.1002/pat.4702Search in Google Scholar

Liu, J. N., Pang, X. Y., Shi, X. Z. and Xu, J. Z., "Expandable Graphite in Polyethylene: The Effect of Modification, Particle Size and the Synergistic Effect with Ammonium Polyphosphate on Flame Retardancy, Thermal Stability and Mechanical Properties", Combust. Sci. Technol., 192, 575–591 (2020), DOI:10.1080/00102202.2019.158479710.1080/00102202.2019.1584797Search in Google Scholar

Liu, Y., Wang, D. Y., Wang, J. S., Song, Y. P. and Wang, Y. Z., "A Novel Intumescent Flame-Retardant LDPE System and its Thermo-Oxidative Degradation and Flame-Retardant Mechanisms", Polym. Adv. Technol., 19, 1566–1575 (2008), DOI:10.1002/pat.117110.1002/pat.1171Search in Google Scholar

Ma, L., Wang, G. J. and Dai, J. F., "Preparation of Functional Reduced Graphene Oxide and its Influence on the Properties of Polyimide Composites", J. Appl. Polym. Sci., 134 (2017), DOI:10.1002/app.4511910.1002/app.45119Search in Google Scholar

Nampoothiri, K. M., Nair, N. R. and John, R. P., "An Overview of the Recent Developments in Polylactide (PLA) Research", Bioresour. Technol., 101, 8493–8501 (2010), DOI:10.1016/j.biortech.2010.05.09210.1016/j.biortech.2010.05.092Search in Google Scholar PubMed

Navidpour, A. H., Salehi, M., Salimijazi, H. R., Kalantari, Y. and Azarpoursiahkali, M., "Photocatalytic Activity of Flame-Sprayed Coating of Zinc Ferrite Powder", J. Therm. Spray Technol., 26, 2030–2039 (2017), DOI:10.1007/s11666-017-0648-010.1007/s11666-017-0648-0Search in Google Scholar

Pang, X. Y., Chang, R. and Weng, M. Q., "Halogen-Free Flame Retarded Rigid Polyurethane Foam: The Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Flame Retardancy and Thermal Stability", Polym. Eng. Sci., 58, 2008–2018 (2018), DOI:10.1002/pen.2481110.1002/pen.24811Search in Google Scholar

Pang, X. Y., Tian, Y. and Shi, X. Z., "Synergism between Hydrotalcite and Silicate-Modified Expandable Graphite on Ethylene Vinyl Acetate Copolymer Combustion Behavior", J. Appl. Polym. Sci., (2017), DOI:10.1002/app.4463410.1002/app.44634Search in Google Scholar

Polat, O., Kaynak, C., "Effects of Zinc Borate on the Flame Retardancy Performance of Aluminum Diethylphosphinate in Polyamide-6 and its Composites", Int. Polym. Proc., 34, 59–71 (2019), DOI:10.3139/217.3579310.3139/217.35793Search in Google Scholar

Ribeiro, S. P. S., Martins, R. C., Estevão, L. R. M., Nascimento, M. A. C. and Nascimento, R. S. V., "Microscopy as a Tool to Investigate the Influence of Ammonium Polyphosphate Particle Size on the Flame Retardant Properties of Polymer Composites", Microsc. Res. Tech., 83, 276–286 (2020), DOI:10.1002/jemt.2341110.1002/jemt.23411Search in Google Scholar PubMed

Shen, M. Y., Chen, W. J., Tsai, K. C., Kuan, C. F., Kuan, H. C., Chou, H. W. and Chiang, C. L., "Preparation of Expandable Graphite and its Flame Retardant Properties in HDPE Composites", Polym. Compos., 38, 2378–2386 (2017), DOI:10.1002/pc.2382010.1002/pc.23820Search in Google Scholar

Sun, Z., Fu, Q. G., Li, H. J. and Li, K. Z., "Preparation and Electrochemical Capacitive Behavior of Graphene by Microwave Assisted Thermal Reduction of Graphite Oxide in Hydrazine Hydrate", Nano Brief Reports & Reviews, 9, 1450066 (2014), DOI:10.1142/S179329201450066010.1142/S1793292014500660Search in Google Scholar

Suparanon, T., Phusunti, N. and Phetwarotai, W., "Properties and Characteristics of Polylactide Blends: Synergistic Combination of Poly(butylene succinate) and Flame Retardant", Polym. Adv. Technol., 29, 785–794 (2018), DOI:10.1002/pat.418410.1002/pat.4184Search in Google Scholar

Tian, S. Y., Chen, Y. F., Hu, Y. J., Wang, Y. F. and Ye, L. G., "Decomposition Mechanism of Atmospheric Carbon Thermal Reduction of Zinc Ferrite and its Kinetics", China Nonferrous Metallurgy, 4, 64–69 (2018), DOI:10.19612/j.cnki.cn11-5066/tf.2018.04.01810.19612/j.cnki.cn11-5066/tf.2018.04.018Search in Google Scholar

Xie, L. Q., "Study on Decomposition of Zinc Ferrite and Comprehensive Utilization of Iron Resources", Master Thesis, Kunming University of Science and Technology, Kunming, PRC (2011)Search in Google Scholar

Yang, B. J., Li, H., Wang, B. N., Chen, X. and Li, J. F., "Study of Flame Retardant Property of Flexible PVC Added with Nano Zinc Ferrite", Hefei Gongye Daxue Xuebao, Ziran Kexueban, 34, 145–148 (2011), DOI:10.3969/j.issn.1003-5060.2011.01.03410.3969/j.issn.1003-5060.2011.01.034Search in Google Scholar

Yang, C. Z., Li, Z. W., Yu, L. G., Li, X. H. and Zhang, Z. J. "Mesoporous Zinc Ferrite Microsphere-Decorated Graphene Oxide as a Flame Retardant Additive: Preparation, Characterization, and Flame Retardance Evaluation", Ind. Eng. Chem. Res., 56, 7720–7729 (2017), DOI:10.1021/acs.iecr.7b0129410.1021/acs.iecr.7b01294Search in Google Scholar

Ye, L., Meng, X. Y., Ji, X., Li, Z. M. and Tang, J. H., "Synthesis and Characterization of Expandable Graphite–Poly(methylmethacrylate) Composite Particles and their Application to Flame Retardation of Rigid Polyurethane Foams", Polym. Degrad. Stab., 94, 971–979 (2009), DOI:10.1016/j.polymdegradstab.2009.03.01610.1016/j.polymdegradstab.2009.03.016Search in Google Scholar

Yu, B., Wang, X., Qian, X., Xing, W., Yang, H. and Ma, L., "Functionalized Graphene Oxide/Phosphoramide Oligomer Hybrids Flame Retardant Prepared via in situ Polymerization for Improving the Fire Safety of Polypropylene", RSC Adv., 4, 31782–31794 (2014), DOI:10.1039/C3RA45945D10.1039/C3RA45945DSearch in Google Scholar

Zhang, Q. R., Li, Z. W., Li, X. H., Yu, L. G., Zhang, Z. J. and Wu, Z. S., "Zinc Ferrite Nanoparticle Decorated Boron Nitride Nanoplate: Preparation, Magnetic Field Arrangement, and Flame Retardancy", Chem. Eng. J., 356, 680–692 (2019), DOI:10.1016/j.cej.2018.09.05310.1016/j.cej.2018.09.053Search in Google Scholar

Zhang, S., Guo, J., Sun ,Y. Y., Lv, Z. X., Jin, X. D., Liu, X. D., Gu, X. Y., Li, H. F. and Sun, J., "Enhancing the Flame Retardancy of Polyamide 6 by Guanidine Sulfamate-Modified Carbon Nanoparticles: Carbon Nanotubes versus Graphite Oxide", Polym. Compos., 40, E1884-E1892 (2019), DOI:10.1002/pc.2518610.1002/pc.25186Search in Google Scholar

Zhang, S., Lu, C., Gao, X. P., Huang, X. H., Cao, C. L. and Yao, D. H., "Synergistic Flame-Retarded Effect between Carbon Nanotubes and Ammonium Polyphosphate in Nylon6 and Nylon6/Polystyrene Blends", Fire Mater., 43, 401–412 (2019), DOI:10.1002/fam.271210.1002/fam.2712Search in Google Scholar

Zhao, B., Liu, P. W., Liu, D. Y., Kolibaba, T. J., Zhang, C. Y., Liu, Y. T. and Liu, Y. Q., "Functionalized Graphene Oxide Based on Hydrogen-Bonding Interaction in Water: Preparation and Flame-Retardation on Epoxy Resin", Macromol. Mater. Eng., 304, 1900164 (2019), DOI:10.1002/mame.20190016410.1002/mame.201900164Search in Google Scholar

Zhou, Y., Hao, J. W., Liu, G. S. and Du, J. X., "Influencing Mechanism of Transition Metal Oxide on Thermal Decomposition of Ammonium Polyphosphate", Chinese J. Inorg. Chem., 29, 1115–1122 (2013), DOI:10.3969/j.issn.1001-4861.2013.00.19310.3969/j.issn.1001-4861.2013.00.193Search in Google Scholar

Received: 2020-08-19
Accepted: 2021-01-13
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 3.2.2023 from
Scroll Up Arrow