Abstract
To improve the thermal stability, ZF-GO (graphene oxide (GO) modified by zinc ferrite (ZF)) is prepared. In view of the anti-dripping function of ZF-GO and flame retardant effect of ammonium polyphosphate (APP), the influence of ZF-GO, APP, mixture of ZF-GO and APP on combustion performance, thermal stability and mechanical properties of polylactic acid (PLA) is investigated. Results show that the modification of GO by ZF significantly improves the residue of ZFGO by 34.7%. The char-forming capability and unique network structure of ZF-GO prevent the melt dripping of PLA. Although APP can increase the limiting oxygen index of PLA, there is still melt dripping. The combination of ZF-GO and APP improves the residual yield of 94PLA/3ZF-GO/3APP by 4.3 times relative to pure PLA, and the UL-94 level reaches V-0. The two additives show synergistic char-forming effect, and there is both physical carbonization and chemical carbonization. The incorporated fillers can decrease the total heat release (THR) of PLA composites. Specifically, the THR and peak value of heat release rate of 94PLA/3ZF-GO/3APP decrease by 21.2% and 53.9%, respectively. For the PLA/ZF-GO/APP system, plenty of residues and the anti-dripping network structure are key factors to get good flame retardancy. Addition of ZFGO and APP reduces the tensile strength, but the tensile elongation of the modified PLA composites is improved. 94PLA/ 3ZF-GO/3APP shows good integrated performance.
Nomenclature
- APP
ammonium polyphosphate
- BPE
polyelectrolyte;
- DDM
4,4-diaminodiphenyl methane
- EDS
energy dispersive spectrum
- EG
expanded graphite
- FESEM
field emission scanning electron microscope
- GIC
graphite intercalation compound
- GO
graphene oxide
- LOI
limiting oxygen index, %
- NG
natural graphite
- PEG
polyethylene glycol
- PHRR
peak value of heat release rate, W g–1
- PLA
polylactic acid
- Rmax
the maximum mass loss rate, wt%°C–1
- T5
temperature corresponding to a 5% weight loss, °C
- Tm
melting point, °C
- Tmax
temperature corresponding to the maximum weight loss rate, °C;
- TG
thermogravimetric analysis
- TG/DTG
thermogravimetric and differential thermogravimetric analysis;
- THR
total heat release, kJ g–1
- Xγ
crystallinity
- XRD
Ω ray diffraction spectrum
- ZF
zinc ferrite
- ZF-GO
GO modified by ZF
- ΔHc
thermal enthalpy of the detected samples, J g–1
Acknowledgements
This study is supported by project (No. B2015201028) of Natural Science Foundation of Hebei Province. We gratefully acknowledge the support.
References
Bourelle, E., Konno, H. and Inagaki, M., "Structural Defects Created on Natural Graphite Surface by Slight Treatment of Oxygen Plasma: STM Observations", Carbon, 37, 2041–2048 (1999), DOI:10.1016/S0008-6223(99)00076-710.1016/S0008-6223(99)00076-7Search in Google Scholar
Camino, G., Costa, L., Trossarelli, L., Costanzi, F. and Pagliari, A., "Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part VI-Mechanism of Ester Formation in Ammonium Polyphosphate-Pentaerythritol Mixtures", Polym. Degrad. Stab., 12, 213–228 (1985), DOI:10.1016/0141-3910(84)90027-210.1016/0141-3910(84)90027-2Search in Google Scholar
Chang, R., Pang, X. Y., Li, Z. J. and Xin, Y. P., "Preparation and Characterization of Large Size Graphite Oxide and Graphene", Journal of Hebei University (Natural Science Edition), 40, 260–268 (2020), 1565.2020.03.006, DOI:10.3969/j.issn.100010.3969/j.issn.1000Search in Google Scholar
Chen, S. S., Ai, L. H., Zeng, J. M. and Liu, P., "Synergistic Flame-Retardant Effect of an Aryl Boronic Acid Compound and Ammonium Polyphosphate on Epoxy Resins", Chemistry Select, 4, 9677–9682 (2019), DOI:10.1002/slct.20190279510.1002/slct.201902795Search in Google Scholar
Chen, Y. Y., Geever, L. M., Killion, J. A., Lyons, J. G, Higginbotham, C. L. and Devine, D. M., "Halloysite Nanotube Reinforced Polylactic Acid Composite", Polym. Compos., 38, 2166–2173(2017), DOI:10.1002/pc.2379410.1002/pc.23794Search in Google Scholar
Decsov, K., Bocz, K., Szolnoki, B., Bourbigot, S., Fontaine, G., Vadas, D. and Marosi, G., "Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid", Molecules, 24, 4123 (2019), DOI:10.3390/molecules2422412310.3390/molecules24224123Search in Google Scholar PubMed PubMed Central
Elhamnia, M., Motlagh, G. H. and Goudarzi, R., "The Grafting of PEG-MA Chains on Graphene Derivatives to Improve Tensile Properties of Polyethylene", Int. Polym. Proc., 32, 623–636 (2017), DOI:10.3139/217.350810.3139/217.3508Search in Google Scholar
Fan, B. B., Guo, H. H., Shi, J., Shi, C. Y., Jia, Y., Wang, H. L., Chen, D. L., Yang, Y. J., Lu, H. X. and Xu, H. L., "Facile One-Pot Preparation of Silver/Reduced Graphene Oxide Nanocomposite for Cancer Photodynamic and Photothermal Therapy", J. Nanosci. Nanotechnol., 16, 7049–7054 (2016), DOI:10.1166/jnn.2016.1132710.1166/jnn.2016.11327Search in Google Scholar
Fischer, E. W., Sterzel, H. J. and Wegner, G., "Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions", Kolloid Z. Z. Polym., 251, 980–990 (1973), DOI:10.1007/BF0149892710.1007/BF01498927Search in Google Scholar
Fukushima, K., Murariu, M. and Camino, G., "Effect of Expanded Graphite/Layered-Silicate Clay on Thermal, Mechanical and Fire Retardant Properties of Poly(lactic acid)", Polym. Degrad. Stab., 95, 1063–1076 (2010), DOI:10.1016/j.polymdegradstab.2010.02.02910.1016/j.polymdegradstab.2010.02.029Search in Google Scholar
Gao, W., Yu, Y., Chen, T. T., Zhang, Q. W., Chen, Z. W., Chen, Z. Q. and Jiang, J. C., "Enhanced Flame Retardancy of Unsaturated Polyester Resin Composites Containing Ammonium PolyphoSearch in Google Scholar
sphate and Metal Oxides", J. Appl. Polym. Sci., 137 (2020), DOI:10.1002/app.4914810.1002/app.49148Search in Google Scholar
Guan, Y. H., Huang, J. Q. and Yang, J. C., "An Effective Way to Flame-Retard Biocomposite with Ethanolamine Modified Ammonium Polyphosphate and its Flame Retardant Mechanisms", Ind. Eng. Chem. Res., 54, 3524–3531 (2015), DOI:10.1021/acs.iecr.5b0012310.1021/acs.iecr.5b00123Search in Google Scholar
Gulnura, N., Kenes, K., Yerdos, O., Zulkhair, M. and Di Capua, R., "Preparation of Expanded Graphite Using a Thermal Method", IOP Conference Series: Materials Science and Engineering, 323, 012012 (2018), DOI:10.1088/1757-899X/323/1/01201210.1088/1757-899X/323/1/012012Search in Google Scholar
Han, Y. Q., Wu, Y., Shen, M. X., Huang, X. L., Zhu, J. J. and Zhang, X. G., "Preparation and Properties of Polystyrene Nanocomposites with Graphite Oxide and Graphene as Flame Retardants", J. Mater. Sci., 48, 4214–4222 (2013), DOI:10.1007/s10853-013-7234-810.1007/s10853-013-7234-8Search in Google Scholar
Harris, A. M., Lee, E. C., "Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity", J. Appl. Polym. Sci., 107, 2246–2255 (2010), DOI:10.1002/app.2726110.1002/app.27261Search in Google Scholar
Hassan, A., Hau, L. Y. and Hasan, M., "Effect of Ammonium Polyphosphate on Flame Retardancy, Thermal Stability, and Mechanical Properties of Unsaturated Polyester/Phenolic/Montmorillonite Nanocomposites", Adv. Polym. Technol., 36, 278–283 (2017), DOI:10.1002/adv.2160510.1002/adv.21605Search in Google Scholar
Hou, Y., Li, X. R. and Zhao, Q. D., "ZnFe2O4 Multi-Porous Microbricks/Graphene Hybrid Photocatalyst: Facile Synthesis, Improved Activity and Photocatalytic Mechanism", Appl. Catal. B, 142–143, 80–88 (2013), DOI:10.1016/j.apcatb.2013.04.06210.1016/j.apcatb.2013.04.062Search in Google Scholar
Jannatin, M., Supriyanto, G., Abdulloh, Ibrahim, W. A. W. and Rukman, N. K., "Graphene Oxide from Bagasse/Magnetite Composite: Preparation and Characterization", IOP Conference Series: Earth and Environmental Science, 217, 1–7 (2019), DOI:10.1088/1755-1315/217/1/01200710.1088/1755-1315/217/1/012007Search in Google Scholar
Jia, L., Tong, B., Li, D. H., Zhang, W. C. and Yang, R. J., "Crystallization and Flame-Retardant Properties of Polylactic Acid Composites with Polyhedral Octaphenylsilsesquioxane", Polym. Adv. Technol., 30, 648–665 (2019), DOI:10.1002/pat.450110.1002/pat.4501Search in Google Scholar
Jing, J., Zhang, Y., Fang, Z. P. and Wang, D. Y., "Core-Shell Flame Retardant/Graphene Oxide Hybrid: A Self-Assembly Strategy towards Reducing Fire Hazard and Improving Toughness of Polylactic Acid", Compos. Sci. Technol., 165, 161–167 (2018), 10.1016/j.compscitech.2018.06.024Search in Google Scholar
Jing, J., Zhang, Y., Tang, X. L., Li, X. N., Peng, M. and Fang, Z. P., "Combination of Abio-Based Polyphosphonate and Modified Graphene Oxide toward Superior Flame Retardant Polylactic Acid", RSC Adv., 8, 4304–4313 (2018), DOI:10.1039/C7RA12224A10.1039/C7RA12224ASearch in Google Scholar
Koji, M., Yuki, U. and Kazuma, G., "Surface Modification Effects on the Tensile Properties of Functionalised Graphene Oxide Epoxy Films", RSC Adv., 8, 9677–9684 (2018), DOI:10.1039/C8RA00252E10.1039/C°RA00252ESearch in Google Scholar
Li, L. S., Chen, Y. J., Wu, X. D., Xu, B. and Qian, L. J., "Bi-Phase Flame-Retardant Effect of Dimethyl Methylphosphonate and Modified Ammonium Polyphosphate on Rigid Polyurethane Foam", Polym. Adv. Technol., 30, 2721–2728 (2019), DOI:10.1002/pat.470210.1002/pat.4702Search in Google Scholar
Liu, J. N., Pang, X. Y., Shi, X. Z. and Xu, J. Z., "Expandable Graphite in Polyethylene: The Effect of Modification, Particle Size and the Synergistic Effect with Ammonium Polyphosphate on Flame Retardancy, Thermal Stability and Mechanical Properties", Combust. Sci. Technol., 192, 575–591 (2020), DOI:10.1080/00102202.2019.158479710.1080/00102202.2019.1584797Search in Google Scholar
Liu, Y., Wang, D. Y., Wang, J. S., Song, Y. P. and Wang, Y. Z., "A Novel Intumescent Flame-Retardant LDPE System and its Thermo-Oxidative Degradation and Flame-Retardant Mechanisms", Polym. Adv. Technol., 19, 1566–1575 (2008), DOI:10.1002/pat.117110.1002/pat.1171Search in Google Scholar
Ma, L., Wang, G. J. and Dai, J. F., "Preparation of Functional Reduced Graphene Oxide and its Influence on the Properties of Polyimide Composites", J. Appl. Polym. Sci., 134 (2017), DOI:10.1002/app.4511910.1002/app.45119Search in Google Scholar
Nampoothiri, K. M., Nair, N. R. and John, R. P., "An Overview of the Recent Developments in Polylactide (PLA) Research", Bioresour. Technol., 101, 8493–8501 (2010), DOI:10.1016/j.biortech.2010.05.09210.1016/j.biortech.2010.05.092Search in Google Scholar PubMed
Navidpour, A. H., Salehi, M., Salimijazi, H. R., Kalantari, Y. and Azarpoursiahkali, M., "Photocatalytic Activity of Flame-Sprayed Coating of Zinc Ferrite Powder", J. Therm. Spray Technol., 26, 2030–2039 (2017), DOI:10.1007/s11666-017-0648-010.1007/s11666-017-0648-0Search in Google Scholar
Pang, X. Y., Chang, R. and Weng, M. Q., "Halogen-Free Flame Retarded Rigid Polyurethane Foam: The Influence of Titanium Dioxide Modified Expandable Graphite and Ammonium Polyphosphate on Flame Retardancy and Thermal Stability", Polym. Eng. Sci., 58, 2008–2018 (2018), DOI:10.1002/pen.2481110.1002/pen.24811Search in Google Scholar
Pang, X. Y., Tian, Y. and Shi, X. Z., "Synergism between Hydrotalcite and Silicate-Modified Expandable Graphite on Ethylene Vinyl Acetate Copolymer Combustion Behavior", J. Appl. Polym. Sci., (2017), DOI:10.1002/app.4463410.1002/app.44634Search in Google Scholar
Polat, O., Kaynak, C., "Effects of Zinc Borate on the Flame Retardancy Performance of Aluminum Diethylphosphinate in Polyamide-6 and its Composites", Int. Polym. Proc., 34, 59–71 (2019), DOI:10.3139/217.3579310.3139/217.35793Search in Google Scholar
Ribeiro, S. P. S., Martins, R. C., Estevão, L. R. M., Nascimento, M. A. C. and Nascimento, R. S. V., "Microscopy as a Tool to Investigate the Influence of Ammonium Polyphosphate Particle Size on the Flame Retardant Properties of Polymer Composites", Microsc. Res. Tech., 83, 276–286 (2020), DOI:10.1002/jemt.2341110.1002/jemt.23411Search in Google Scholar PubMed
Shen, M. Y., Chen, W. J., Tsai, K. C., Kuan, C. F., Kuan, H. C., Chou, H. W. and Chiang, C. L., "Preparation of Expandable Graphite and its Flame Retardant Properties in HDPE Composites", Polym. Compos., 38, 2378–2386 (2017), DOI:10.1002/pc.2382010.1002/pc.23820Search in Google Scholar
Sun, Z., Fu, Q. G., Li, H. J. and Li, K. Z., "Preparation and Electrochemical Capacitive Behavior of Graphene by Microwave Assisted Thermal Reduction of Graphite Oxide in Hydrazine Hydrate", Nano Brief Reports & Reviews, 9, 1450066 (2014), DOI:10.1142/S179329201450066010.1142/S1793292014500660Search in Google Scholar
Suparanon, T., Phusunti, N. and Phetwarotai, W., "Properties and Characteristics of Polylactide Blends: Synergistic Combination of Poly(butylene succinate) and Flame Retardant", Polym. Adv. Technol., 29, 785–794 (2018), DOI:10.1002/pat.418410.1002/pat.4184Search in Google Scholar
Tian, S. Y., Chen, Y. F., Hu, Y. J., Wang, Y. F. and Ye, L. G., "Decomposition Mechanism of Atmospheric Carbon Thermal Reduction of Zinc Ferrite and its Kinetics", China Nonferrous Metallurgy, 4, 64–69 (2018), DOI:10.19612/j.cnki.cn11-5066/tf.2018.04.01810.19612/j.cnki.cn11-5066/tf.2018.04.018Search in Google Scholar
Xie, L. Q., "Study on Decomposition of Zinc Ferrite and Comprehensive Utilization of Iron Resources", Master Thesis, Kunming University of Science and Technology, Kunming, PRC (2011)Search in Google Scholar
Yang, B. J., Li, H., Wang, B. N., Chen, X. and Li, J. F., "Study of Flame Retardant Property of Flexible PVC Added with Nano Zinc Ferrite", Hefei Gongye Daxue Xuebao, Ziran Kexueban, 34, 145–148 (2011), DOI:10.3969/j.issn.1003-5060.2011.01.03410.3969/j.issn.1003-5060.2011.01.034Search in Google Scholar
Yang, C. Z., Li, Z. W., Yu, L. G., Li, X. H. and Zhang, Z. J. "Mesoporous Zinc Ferrite Microsphere-Decorated Graphene Oxide as a Flame Retardant Additive: Preparation, Characterization, and Flame Retardance Evaluation", Ind. Eng. Chem. Res., 56, 7720–7729 (2017), DOI:10.1021/acs.iecr.7b0129410.1021/acs.iecr.7b01294Search in Google Scholar
Ye, L., Meng, X. Y., Ji, X., Li, Z. M. and Tang, J. H., "Synthesis and Characterization of Expandable Graphite–Poly(methylmethacrylate) Composite Particles and their Application to Flame Retardation of Rigid Polyurethane Foams", Polym. Degrad. Stab., 94, 971–979 (2009), DOI:10.1016/j.polymdegradstab.2009.03.01610.1016/j.polymdegradstab.2009.03.016Search in Google Scholar
Yu, B., Wang, X., Qian, X., Xing, W., Yang, H. and Ma, L., "Functionalized Graphene Oxide/Phosphoramide Oligomer Hybrids Flame Retardant Prepared via in situ Polymerization for Improving the Fire Safety of Polypropylene", RSC Adv., 4, 31782–31794 (2014), DOI:10.1039/C3RA45945D10.1039/C3RA45945DSearch in Google Scholar
Zhang, Q. R., Li, Z. W., Li, X. H., Yu, L. G., Zhang, Z. J. and Wu, Z. S., "Zinc Ferrite Nanoparticle Decorated Boron Nitride Nanoplate: Preparation, Magnetic Field Arrangement, and Flame Retardancy", Chem. Eng. J., 356, 680–692 (2019), DOI:10.1016/j.cej.2018.09.05310.1016/j.cej.2018.09.053Search in Google Scholar
Zhang, S., Guo, J., Sun ,Y. Y., Lv, Z. X., Jin, X. D., Liu, X. D., Gu, X. Y., Li, H. F. and Sun, J., "Enhancing the Flame Retardancy of Polyamide 6 by Guanidine Sulfamate-Modified Carbon Nanoparticles: Carbon Nanotubes versus Graphite Oxide", Polym. Compos., 40, E1884-E1892 (2019), DOI:10.1002/pc.2518610.1002/pc.25186Search in Google Scholar
Zhang, S., Lu, C., Gao, X. P., Huang, X. H., Cao, C. L. and Yao, D. H., "Synergistic Flame-Retarded Effect between Carbon Nanotubes and Ammonium Polyphosphate in Nylon6 and Nylon6/Polystyrene Blends", Fire Mater., 43, 401–412 (2019), DOI:10.1002/fam.271210.1002/fam.2712Search in Google Scholar
Zhao, B., Liu, P. W., Liu, D. Y., Kolibaba, T. J., Zhang, C. Y., Liu, Y. T. and Liu, Y. Q., "Functionalized Graphene Oxide Based on Hydrogen-Bonding Interaction in Water: Preparation and Flame-Retardation on Epoxy Resin", Macromol. Mater. Eng., 304, 1900164 (2019), DOI:10.1002/mame.20190016410.1002/mame.201900164Search in Google Scholar
Zhou, Y., Hao, J. W., Liu, G. S. and Du, J. X., "Influencing Mechanism of Transition Metal Oxide on Thermal Decomposition of Ammonium Polyphosphate", Chinese J. Inorg. Chem., 29, 1115–1122 (2013), DOI:10.3969/j.issn.1001-4861.2013.00.19310.3969/j.issn.1001-4861.2013.00.193Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany