Abstract
Rule of mixtures (RoMs) of composite materials is continuously modified according to different component materials and their composition forms to play the role of theoretical verification and evaluation. This paper studied the regular relationship between the bonding surface and mechanical performance of the composites. The three bonding surface designs were made into PLA/EP test samples by 3D printing technology. The tensile and bending properties of the composite materials were proved to be stronger than the average of those of their component materials. The mechanical properties show regular changes with the bonding surface and structural design. The bonding surface between components is an important reference information that cannot be ignored for the performance prediction and adjustment of laminated composite materials.
Acknowledgements
This work was supported by Science and Technology Plan Project of Liaoning Province, PRC (2019-ZD-0284) and also by Guangzhou Trenrde Tech Co. Ltd.
References
Bettini, P., Alitta, G., Sala, G. and Landro, L. D., "Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic", J. Mater. Eng. Perform., 26, 843–848 (2017), DOI:10.1007/s11665-016-2459-810.1007/s11665-016-2459-8Search in Google Scholar
Budhe, S., de Barros, S. and Banea, M. D., "Theoretical Assessment of the Elastic Modulus of Natural Fiber-Based Intra-Ply Hybrid Composites", J. Braz. Soc. Mech. Sci. Eng., 41, 263 (2019), DOI:10.1007/s40430-019-1766-z10.1007/s40430-019-1766-zSearch in Google Scholar
Chen, X., Li, T., Zhai, K., Hu, Z. and Zhou, M., "Using Orthogonal Experimental Method Optimizing Surface Quality of CO2 Laser Cutting Process for PMMA Microchannels", Int. J. Adv. Manuf.Tech., 88, 9–12 (2016a), DOI:10.1007/s00170-016-8887-710.1007/s00170-016-8887-7Search in Google Scholar
Chen, X., Shen, J. and Zhou, M., "Rapid Fabrication of a Four-Layer PMMA-Based Microfluidic Chip Using CO2-Laser Micromachining and Thermal Bonding", J. Micromech. Microeng., 26, 107001 (2016b), DOI:10.1088/0960-1317/26/10/10700110.1088/0960-1317/26/10/107001Search in Google Scholar
Chu, Z., Pourhosseiniasl, M. J. and Dong, S., "Review of Multi-Layered Magnetoelectric Composite Materials and Devices Applications", J. Phys. D: Appl. Phys., 51, 243001 (2018), DOI:10.1088/1361-6463/aac29b10.1088/1361-6463/aac29bSearch in Google Scholar
Cox, H. L., "The Elasticity and Strength of Paper and Other Fibrous Materials", Br. J. Appl. Phys., 3, 72–79 (1952), DOI:10.1088/0508-3443/3/3/30210.1088/0508-3443/3/3/302Search in Google Scholar
Dickson, A. N., Barry, J. N., McDonnell, K. A. and Dowling, D. P., "Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing", Addit. Manuf., 16, 146–152 (2017), DOI:10.1016/j.addma.2017.06.00410.1016/j.addma.2017.06.004Search in Google Scholar
Galos, J., "Thin-Ply Composite Laminates: A Review", Compos. Struct., 111920 (2020), 10.1016/j.compstruct.2020.111920Search in Google Scholar
Hyer, M. W., Waas, A. M., "Volume 1.12, Micromechanics of Linear Elastic Continuous Fiber Composites", in Fibre Reinforcements and General Theory of Composites, Kelly, A., Zweben, C. (Eds.), Elsevier Science, Blacksburg, USA, p. 345–375 (2000), DOI:10.1016/B0-08-042993-9/00049-810.1016/B0-08-042993-9/00049-8Search in Google Scholar
Jayaraman, K., Kortschot, M. T., "Correction to the Fukuda-Kawata Young’s Modulus Theory and the Fukuda-Chou Strength Theory for Short Fibre-Reinforced Composite Materials", J. Mater. Sci., 31, 2059–2064 (1996), DOI:10.1007/BF0035662710.1007/BF00356627Search in Google Scholar
Khanlou, H. M., Woodfield, P., Summerscales, J., Francucci, G., King, B., Talebian, S., Foroughi, J. and Hall, W., "Estimation of Mechanical Property Degradation of Poly(lactic acid) and Flax Fibre Reinforced Poly(lactic acid) Bio-Composites during Thermal Processing", Meas., 116, 367–372 (2018), DOI:10.1016/j.measurement.2017.11.03110.1016/j.measurement.2017.11.031Search in Google Scholar
Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada, M., "A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites", Composites Part B, 42, 856–873 (2011), 10.1016/j.compositesb.2011.01.010Search in Google Scholar
Lee, H., Ohsawa, I. and Takahashi, J., "Effect of Plasma Surface Treatment of Recycled Carbon Fiber on Carbon Fiber-Reinforced Plastics (CFRP) Interfacial Properties", Appl. Surf. Sci., 328, 241–246 (2015), DOI:10.1016/j.apsusc.2014.12.01210.1016/j.apsusc.2014.12.012Search in Google Scholar
Liu, J., Y. Guo, Y., Weng, C., Zhang, H. and Zhang, Z., "High Thermal Conductive Epoxy Based Composites Fabricated by Multi-Ma-Terial Direct Ink Writing", Composites Part A, 129, 105684 (2020), 10.1016/j.compositesa.2019.105684Search in Google Scholar
Melenka, G. W., Cheung, B. K. O., Schofield, J. S., Dawson, M. R. and Carey, J. P., "Evaluation and Prediction of the Tensile Properties of Continuous Fiber-Reinforced 3D Printed Structures", Compos. Struct., 153, 866–875 (2016), 10.1016/j.compstruct.2016.07.018Search in Google Scholar
Naranjo-Lozada, J., Ahuett-Garza, H., Orta-Castañón, P., Verbeeten, W. M. H. and Sáiz-González, D., "Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing", Addit. Manuf., 26, 227–241 (2019), DOI:10.1016/j.addma.2018.12.02010.1016/j.addma.2018.12.020Search in Google Scholar
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. and Hui, D., "Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges", Composites Part B, 143, 172–196 (2018), 10.1016/j.compositesb.2018.02.012Search in Google Scholar
Ota, T., Saito, A., Tase, T., Sato, K., Tanaka, M., Yoshida, K., Takamatsu, K., Kawakami, M. and Furukawa, H., "3D Printing of Tough Gels Having Tunable Elastic Modulus from the Same Pre-Gel Solution", Macromol. Chem. Phys., 220, 1800498 (2019), DOI:10.1002/macp.20180049810.1002/macp.201800498Search in Google Scholar
Oztan, C., Karkkainen, R., Fittipaldi, M., Nygren, G., Roberson, L., Lane, M. and Celik, E., "Microstructure and Mechanical Properties of Three Dimensional-Printed Continuous Fiber Composites", J. Compos. Mater., 53, 271–280 (2019), DOI:10.1177/002199831878193810.1177/0021998318781938Search in Google Scholar
Ribeiro, M., Carneiro, O. S., Ferreira aa and Silva, A., "Interface Geometries in 3D Multi-Material Prints by Fused Filament Fabrication", Rapid Prototyping J., 25, 38–46 (2019), DOI:10.1108/RPJ-05-2017-010710.1108/RPJ-05-2017-0107Search in Google Scholar
Sayyad, A. S., Ghugal, Y. M., "Bending, Buckling and Free Vibration of Laminated Composite and Sandwich Beams: A Critical Review of Literature", Compos. Struct., 171, 486–504 (2017), 10.1016/j.compstruct.2017.03.053Search in Google Scholar
Shi, X., Chen, B., Tuo, X., Gong, Y. and Guo, J., "Study on Performance Characteristics of Fused Deposition Modeling 3D-Printed Composites by Blending and Lamination", J. Appl. Polym. Sci., 138, E32495 (2020), DOI:10.1002/app.4992610.1002/app.49926Search in Google Scholar
Song, J., Zhang, Y., "Effect of an Interface Layer on Thermal Conductivity of Polymer Composites Studied by the Design of Double-Layered and Triple-Layered Composites", Int. J. Heat Mass Transfer., 141, 1049–1055 (2019), DOI:10.1016/j.ijheatmasstransfer.2019.07.00210.1016/j.ijheatmasstransfer.2019.07.002Search in Google Scholar
Tham, M. W., Nurul Fazita, M. R., Abdul Khalil, H. P. S., Zuhairah, N., Zuhudi, M., Jaafar, M., Rizal, S. and Mohamad Haafiz, M. K., "Tensile Properties Prediction of Natural Fibre Composites Using Rule of Mixtures: A Review", J. Reinf. Plast. Compos., 38, 211–248 (2019), DOI:10.1177/073168441881365010.1177/0731684418813650Search in Google Scholar
Tuo, X., Ma, G., Tan, Q., Gong, Y. and Guo, J., "A Study on Dispersions of CB and CNT in PP/EPDM Composites and their Mechanical Reinforcement", Polym. Compos., 28, 35–44 (2020), DOI:10.1177/096739111985739410.1177/0967391119857394Search in Google Scholar
Tuo, X., Tan, Q., Zhao, Y., Gong, Y. and Gu, J., "Study of Fiber Morphology Characteristics of Discontinuous Carbon-Fiber-Reinforced Indium Tin Oxide Transparent Conductive Film by Image Analysis Method", Jpn. J. Appl. Phys., 57, 101801 (2018a), DOI:10.7567/JJAP.57.10180110.7567/JJAP.57.101801Search in Google Scholar
Tuo, X., Yu, Y., Zhao, Y., Gong, Y. and Guo, J., "Validation Study on the Theory of Composites by Using Three-Dimensional Printing Technology", J. Reinf. Plast. Compos., 37, 1004–1010 (2018b), DOI:10.1177/073168441877582010.1177/0731684418775820Search in Google Scholar
Wang, F., Zhang, Z., Ning, F., Wang, G. and Dong, C., "A Mechanistic Model for Tensile Property of Continuous Carbon Fiber Reinforced Plastic Composites Built by Fused Filament Fabrication", Addit. Manuf., 32, 101102 (2020), DOI:10.1016/j.addma.2020.10110210.1016/j.addma.2020.101102Search in Google Scholar
Zhang, J., Zhang, W., Wei, L., Pu, L., Liu, J., Liu, H., Li, Y., Fan, J., Ding, T. and Guo, Z., "Alternating Multilayer Structural Epoxy Composite Coating for Corrosion Protection of Steel", Macromol. Mater. Eng., 304, 1900374 (2019), DOI:10.1002/mame.20190037410.1002/mame.201900374Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany