Accessible Requires Authentication Published by De Gruyter September 15, 2021

The Effect of Nanosilicates on the Performance of Polyethylene Terephthalate Films Prepared by Twin-Screw Extrusion

A. Ghanbari, M.-C. Heuzey and P. J. Carreau

Abstract

Polyethylene terephthalate (PET) films were prepared by cast extrusion using a twin-screw extruder with a severe screw profile. The effect of an organically modified montmorillonite on thermal, mechanical, optical, and barrier properties of the PET films were investigated. Morphological characterization of the nanocomposite films was performed by employing wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) followed by image analysis. The results unfold a mixed morphology for the nanocomposite films with more than 95% exfoliated and intercalated silicate layer structures, depending on the screw rotation speed. The remarkable dispersion of the organoclay particles at the nano-level is discussed in terms of solubility parameter and favorable interactions between PET macromolecules and organic modifier of the nanoclay. The crystal content of the nanocomposite films and their cold and hot crystallization temperatures confirmed the role of silicate nanolayers as a heterogeneous nucleating agent. While all nanocomposite films exhibit higher haze values in comparison to the neat PET samples, incorporation of 2 wt% nanoclay brought about 25% increase in tensile modulus and barrier properties. A range of screw rotation speeds with optimized properties in terms of haze, morphology, thermal, mechanical, and barrier properties is suggested.


Pierre J. Carreau, Research Center for High Performance Polymer and Composite Materials (CREPEC), Chemical Engineering Department, Polytechnique Montreal, PO Box 6079, Stn Centre-Ville, Montreal, QC, Canada H3C 3A7


Acknowledgements

The authors are thankful to Mrs. W. Leelapornpisit for the SEM and TEM analysis. Financial support from NSERC (Natural Science and Engineering Research Council of Canada) in the context of the NRC-NSERC-BDC Nanotechnology Initiative is gratefully acknowledged.

References

Ammala, A., Bell, C. and Dean, K., "Poly(ethylene terephthalate) Clay Nanocomposites: Improved Dispersion Based on an Aqueous Ionomer", Compos. Sci. Technol., 68, 1328–1337 (2008), 10.1016/j.compscitech.2007.12.012 Search in Google Scholar

Andreassen, E., Larsen, Å., Nord-Varhaug, K, Skar, M. and Oysaed, H., "Haze of Polyethylene Films-Effects of Material Parameters and Clarifying Agents", Polym. Eng. Sci., 42, 1082–1097 (2002), DOI:10.1002/pen.11014 Search in Google Scholar

Bandyopadhyay, J., Sinha Ray, S., "Chapter 10 Clay-Containing Poly(ethylene terephthalate) (PET)-Based Polymer Nanocomposites", in Advances in Polymer Nanocomposites: Types and Applications, Elsevier, Cambridge, UK, p. 277–320 (2012), DOI:10.1533/9780857096241.2.277 Search in Google Scholar

Bhattacharya, S. N., Kamal, M. R. and Gupta, R. K.: Polymeric Nanocomposites: Theory and Practice, Hanser Publishers, Munich (2008), DOI:10.3139/9783446418523.fm Search in Google Scholar

Dini, M., Mousavand, T., Carreau, P. J., Kamal, M. R. and Ton-That, M.-T., "Effect of Water-Assisted Extrusion and Solid-State Polymerization on the Microstructure of PET/Clay Nanocomposites", Polym. Eng. Sci., 54,1723–1736 (2014), DOI:10.1002/pen.23685 Search in Google Scholar

Esmaeili, B., Dubois, C., Carreau, P. J. and Heuzey, M. C., "In situ Polymerization of PET in the Presence of Pristine and Organo-Modified Clays", Int. Polym. Proc., 28, 331–340 (2013), DOI:10.3139/217.2760 Search in Google Scholar

Fornes, T. D., Paul, D. R., "Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories", Polymer (Guildf), 44, 4993–5013 (2013), DOI:10.1016/S0032-3861(03)00471-3 Search in Google Scholar

Fornes, T. D., Yoon, P. J. and Paul, D. R., "Polymer Matrix Degradation and Color Formation in Melt Processed Nylon 6/Clay Nanocomposites", Polymer (Guildf), 44, 7545–7556 (2003), DOI:10.1016/j.polymer.2003.09.034 Search in Google Scholar

Frounchi, M., Dourbash, A., "Oxygen Barrier Properties of Poly(ethylene terephthalate) Nanocomposite Films", Macromol. Mater. Eng., 294, 68–74, DOI:10.1002/mame.200800238 Search in Google Scholar

Fu, S. Y., Lauke, B. and Mai, Y. W.: Science and Engineering of Short Fibre Reinforced Polymer Composites, Elsevier, Cambridge, UK (2009), DOI:10.1533/9781845696498.80 Search in Google Scholar

Ghanbari, A., Heuzey, M.-C., Carreau, P. J. and Ton-That, M.-T.: "Chapter 21 Morphology and Gas Barrier Properties of Polymer Nanocomposites", in Polymer Morphology, John Wiley & Sons, Hoboken, p. 397–417 (2016), DOI:10.1002/9781118892756.ch21 Search in Google Scholar

Ghanbari, A., Heuzey, M.-C., Carreau, P. J. and Ton-That, M.-T., "Morphological and Rheological Properties of PET/Clay Nanocomposites", Rheol. Acta, 52, 59–74 (2013a), DOI:10.1007/s00397-012-0667-1 Search in Google Scholar

Ghanbari, A., Heuzey, M.-C., Carreau, P. J. and Ton-That, M.-T., "Morphology and Properties of Polymer/Organoclay Nanocomposites Based on Poly(ethylene terephthalate) and Sulfopolyester Blends", Polym. Int., 62, 439–448 (2013b), DOI:10.1002/pi.4331 Search in Google Scholar

Ghanbari, A., Heuzey, M.-C., Carreau, P. J. and Ton-That, M.-T., "A novel Approach to Control Thermal Degradation of PET/Organoclay Nanocomposites and Improve Clay Exfoliation", Polymer (Guildf), 54,1361–1369 (2013c), DOI:10.1016/J.POLYMER.2012.12.066 Search in Google Scholar

Ghasemi, H., Carreau, P. J., Kamal, M. R. and Chapleau, N., "Effect of Processing Conditions on Properties of PET/Clay Nanocomposite Films", Int. Polym. Proc., 26, 219–228 (2011a), DOI:10.3139/217.2446 Search in Google Scholar

Ghasemi, H., Carreau, P. J., Kamal, M. R. and Uribe-Calderon, J., "Preparation and Characterization of PET/Clay Nanocomposites by Melt Compounding", Polym. Eng. Sci., 51, 1178–1187 (2011b), DOI:10.1002/pen.21874 Search in Google Scholar

Gok, A., Ngendahimana, D. K., Fagerholm, C. L., French, R. H., Sun, J. and Bruckman, L. S., "Predictive Models of Poly(ethyleneterephthalate) Film Degradation under Multifactor Accelerated Weathering Exposures", PLoS One, 12 (2017), DOI:10.1371/journal.pone.0177614 Search in Google Scholar

Kasap, S., Capper, P. (Eds.): Springer Handbook of Electronic and Photonic Materials, 2nd Edition, Springer International, New York (2017), DOI:10.1007/978-3-319-48933-9 Search in Google Scholar

Krevelen, D. W. van, Nijenhuis, K. te: Properties of Polymers, 4th Edition, Elsevier Science, Amsterdam (2009) Search in Google Scholar

Lertwimolnun, W., Vergnes, B., "Effect of Processing Conditions on the Formation of Polypropylene/Organoclay Nanocomposites in a Twin Screw Extruder", Polym. Eng. Sci., 46,314–323 (2006), DOI:10.1002/pen.20458 Search in Google Scholar

Lertwimolnun, W., Vergnes, B., "Influence of Screw Profile and Extrusion Conditions on the Microstructure of Polypropylene/Organoclay Nanocomposites", Polym. Eng. Sci., 47, 2100–2109 (2007), DOI:10.1002/pen.20934 Search in Google Scholar

Li, S., Auddy, K., Barber, P., Hansen, T. J., Ma, J., zur Loye, H.-C. and Ploehn, H. J., "Thermal, Mechanical, and Barrier Properties of Polyethylene Terephthalate-Platelet Nanocomposites Prepared by in situ Polymerization", Polym. Eng. Sci., 52, 1888–1902 (2012), DOI:10.1002/pen.23146 Search in Google Scholar

Libório, P., Oliveira, V. A. and Marques, M. de F. V., "Preparation of Nanocomposites of Polypropylene/Alkylaluminum-Modified Clay: Effect of Polymer Grade, Amount of Clay, and Screw Speed", Polym. Plast. Technol. Eng., 56, 123–130 (2017), DOI:10.1080/03602559.2016.1185617 Search in Google Scholar

Matthews, R. G., Ajji, A, Dumoulin, M. M. and Prud’Homme, R. E., "The Effects of Stress Relaxation on the Structure and Orientation of Tensile Drawn Poly(ethylene terephthalate)", Polymer (Guildf), 41, 7139–7145 (2000), DOI:10.1016/S0032-3861(00)00052-5 Search in Google Scholar

Pike, L. "Optical Properties of Packaging Materials", J. Plast. Film Sheeting, 9, 173–180 (1993), DOI:10.1177/875608799300900302 Search in Google Scholar

Ram, A.: Fundamentals of Polymer Engineering, 1st Edition, Springer, Boston, USA (1997), DOI:10.1007/978-1-4899-1822-2 Search in Google Scholar

Sang, T., Wallis, C. J., Hill, G. and Britovsek, G. J. P., "Polyethylene terephthalate Degradation under Natural and Accelerated Weathering Conditions", Eur. Polym. J., 136, 109873 (2020), DOI:10.1016/j.eurpolymj.2020.109873 Search in Google Scholar

Shahverdi-Shahraki, K., Ghosh, T., Mahajan, K., Ajji, A. and Carreau, P. J., "Polyethylene Terephthalate/Calcined Kaolin Composites: Effect of Uniaxial Stretching on the Properties", Polym. Eng .Sci., 55, 1767–1775 (2015), DOI:10.1002/pen.24015 Search in Google Scholar

Stoeffler, K., Lafleur, P. G. and Denault, J., "Thermal Decomposition of Various Alkyl Onium Organoclays: Effect on Polyethylene Terephthalate Nanocomposites’ Properties", Polym. Degrad. Stab., 93, 1332–1350 (2008), DOI:10.1016/j.polymdegradstab.2008.03.029 Search in Google Scholar

Tanoue, S., Hasook, A., Itoh, T., Yanou, M., Iemoto, Y. and Unryu, T., "Effect of Screw Rotation Speed on the Properties of Polystyrene/ Organoclay Nanocomposites Prepared by a Twin-Screw Extruder", J. Appl. Polym. Sci., 101, 1165–1173 (2006), DOI:10.1002/app.24004 Search in Google Scholar

Xu, X. F., Ghanbari, A., Leelapornpisit, W., Heuzey, M. C. and Carreau, P. J., "Effect of Ionomer on Barrier and Mechanical Properties of PET/Organoclay Nanocomposites Prepared by Melt Compounding", Int. Polym. Proc., 26, 444–455 (2011), DOI:10.3139/217.2477 Search in Google Scholar

Zheng, C., Yao, X., Tang, Y., Ren, M., Shi, H. and Zhang, T., "A New Method to Calculate the Surface Haze", J. Polym. Eng., 40, 300–306, DOI:10.1515/polyeng-2019-0348 Search in Google Scholar

Zhong, Y., Janes, D., Zheng, Y., Hetzer, M. and De Kee, D., "Mechanical and Oxygen Barrier Properties of Organoclay-Polyethylene Nanocomposite Films", Polym. Eng. Sci., 47, 1101–1107 (2007), DOI:10.1002/pen.20792 Search in Google Scholar

Zhu, L., Xanthos, M., "Effects of Process Conditions and Mixing Protocols on Structure of Extruded Polypropylene Nanocomposites", J. Appl. Polym. Sci., 93, 1891–1899 (2004), DOI:10.1002/app.20658 Search in Google Scholar

Received: 2020-09-11
Accepted: 2020-12-12
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany